DOI QR코드

DOI QR Code

Aqueous extract of Jigal-san ameliorates acute inflammatory responses in RAW 264.7 cells and rats

NF-𝜅B 및 MAPK억제를 통한 지갈산(止渴散) 물추출물의 염증억제효과

  • Jeong, Deok Ja (Department of Korean Medicine, of Daegu Haany University) ;
  • Park, Sang Mi (Department of Korean Medicine, of Daegu Haany University) ;
  • Kim, Sang Chan (Department of Korean Medicine, of Daegu Haany University)
  • 정덕자 (대구한의대학교 한의과대학 방제학교실) ;
  • 박상미 (대구한의대학교 한의과대학 방제학교실) ;
  • 김상찬 (대구한의대학교 한의과대학 방제학교실)
  • Received : 2021.10.29
  • Accepted : 2021.11.22
  • Published : 2021.11.30

Abstract

Objectives : Jigal-san (JGS, 止渴散) has been used in East Asia including Korea, Japan and China for the treatment of breast inflammatory disorders and severe thirst. JGS originated from Euimunpalbeob (醫門八法; Yimenbafa) composed of Lonicerae Flos and Taraxaci Herba. According to previous studies Lonicerae Flos and Taraxaci Herba have an anti-inflammatory effect, respectively. But, there is no studies regarding on the effects of JGS in the immunological activities. The present study evaluated the anti-inflammatory effects of JGS in vitro and in vivo. Methods : Cell viability was evaluated by MTT assay, and NO was evaluated by content of the nitrite content in culture medium. TNF-α, IL-1β and IL-6 were quantified by ELISA. The protein expression of NF-κB, MAPKs, and iNOS were assessed by western blot analysis. Furthermore, the effects of JGS on acute inflammation were observed in rat paw edema model. Results : The JGS ameliorates the LPS-activated changes in the protein expression of NF-κB, p-JNK, and iNOS, as well as the production of NO and pro-inflammatory cytokines. In rat paw edema study, administration of 0.3 and 1.0 g/kg of JGS for 4 consecutive days inhibited the carrageenan (CA)-induced increases of edema and iNOS expression. Conclusions : These results demonstrate that JGS has anti-inflammatory effect in LPS-stimulated RAW 264.7 cells through decreasing the production of inflammatory mediators, via suppression of the NF-κB and MAPK pathways (JNK, not p-38 and ERK). In addition, the results of the CA-induced paw edema indicate that JGS ameliorates an inflammatory edema. Therefore, the present study could provide scientific evidence for the anti-inflammatory effect of JGS as well as the underlying mechanisms.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea funded by Korea government (MSIP) (Grant No.2018R1A5A2025272).

References

  1. Tian DH. Practical Chinese medicine prescriptions. Beijing:Renminweisheng publisher. 1999:730
  2. Peng HR. Dictionary of Traditional Chinese Medicine Prescriptions (Vol. 2). Beijing:Renminweisheng publisher. 1994:523
  3. http://ypk.39.net/f20376.html
  4. Lee SI. Herbology. Seoul:Suseowon. 1981:520-23.
  5. Shin MK. Clinical Herbology. Seoul:Younglimsa. 1997:411-2, 445-7.
  6. Professor of Herbology at College of Oriental Medicine. Herbology. Seoul:Younglimsa. 1992:198-202.
  7. Suhr SS, Jung SK. Antiviral Effects of Fermented Lonicerae Flos on A Type Influenza Virus. Korean J. Orient. Int. Med. 2009:30(3);465-80.
  8. Bae JH, Kim MS, Kang EH. Antimicrobial Effect of Lonicerae Flos Extracts on Food-borne Pathogens. Korean J. Food Sci. Technol. 2005: 37(4);642-7.
  9. Cho WJ, Yoon HS, Kim YH, Kim JM, Yoo IJ, Han MD, Bang IS. Cytoprotective Effects and Gene Expression Patterns Observed Based on the Antioxidant Activity of Lonicera japonica Extract. Journal of Life Science. 2013:23(8);989-97. https://doi.org/10.5352/JLS.2013.23.8.989
  10. Seo SH, Bae GS, Choi SB, Jo IJ, Kim DG, Shin JY, Song HJ,Park SJ, Choi MO. The antioxidative and cytoprotective effect of Lonicerae japonicae Flos water extracts on the ultraviolet(UV)B-induced human HaCaT keratinocytes. Kor. J. Herbology. 2014:29(6);63-71. https://doi.org/10.6116/KJH.2014.29.6.63.
  11. Moon TC, Park JO, Chung KW, Son KH, Kim HP, Kang SS, Chang HW, Chung KC. Anti-inflammatory Activity of the Flavonoid components of Lonicera japonica. Yakhak Hoeji. 1999:43(1); 117-23.
  12. Yun KJ, Lee EY. Effects of Hot Aqueous and Ethanol Extract from Lonicera japonica Flos on NO and PGE2 in Macrophage. The Journal of Acupuncture Research & Moxibustion Society. 2012:29(1);67-74.
  13. Park SK, Choi BG, Lee EB. Effect of Lonicera Japonica Flower on CCl4 - induced Hepatotoxicity. The Journal of Applied Pharmacology. 2002:10(4); 32-6.
  14. Seo SH,Choi MO. Protectvie effects of Lonicerae Japonicae Flos against hydrogen peroxidase-induced oxidative stress on Human keratinocyte, HaCaT cells. Kor. J. Herbology. 2013:28(4); 57-62. https://doi.org/10.6116/KJH.2013.28.4.57
  15. Son Y, Ma CJ. Neuroprotective Activity of Caffeic Acid Isolated from Lonicera japonica. Kor. J. Pharmacogn. 2020:51(1);30-5. https://doi.org/10.22889/KJP.2020.51.1.030
  16. Han DS, Baek KH, Kim YO, Choi KE, Kwag JS, Baek SH. Development of Anticancer Agents from Korean Medicinal Plants. Part 6. Cytotoxic Activity of the Ethyl Acetate Soluble Fraction of Lonicerae flos against Human Oral Epitheloid Carcinoma Cells. Kor. J. Pharmacogn. 1998:29(1); 22-7.
  17. Kim JW, Lim JK. Antitumor Activity and Chemopreventive Potential of Lonicerae flos Aqua-Acupuncture Solution. Journal of Acupuncture Research. 1999:16(2);261-84.
  18. Kim HW, Kim BJ, Lim SH, Kim HY, Lee SY, Cho SI, Kim YK. Anti-oxidative Effects of Taraxaci Herba and Protective Effects on Human HaCaT Keratinocyte. Kor. J. Herbology. 2009:24(3);103-8.
  19. Lee MH, Song SH, Ham IH, Bu YM, Kim HC, Choi HY. Anti-inflammatory effect and contents from the aerial part and root of the various Taraxacum spp. distributed in Korea. Kor. J. Herbology. 2010:25(4);77-84.
  20. Hahm DH, Sur BJ, Han DO, Park JH, Jung ET, Lee HJ, Koh YJ, Choi HD. Anti-inflammatory Activity of Dandelion in Mice. Korean J. Oriental Physiology & Pathology. 2008:22(4);810-4.
  21. Kim DH, Kim SH. Synergstric action of Anticancer activity and Anticancer drug on Hepatocarcinoma Cell of Taraxaci Herba. K.O.M.S. 1995:16(2); 386-413.
  22. Han DS, Chu KM, Kim YI, Lee JS, You IS, Oh IK, Kang KU, Baek SH. Development of Anticancer Agents from Korean Medicinal Plants(Part 10). The Growth-inhibitory Effect of Taraxaci Herba Extract Against Human Skin Melamoma Cells. J. Toxicol. Pub.Health. 1998:14(4);489-94.
  23. Baek HY. In Vitro Free Radical Scavenging and Hepatoprotective Activities of Taraxacum mongolicum. Kor. J. Pharmacogn. 2003:34(4);324-6.
  24. Lee HW, Ma CJ. Neuroprotective Effect of Taraxacum platycarpum Extract Against Glutamate-induced Oxidative Stress in HT22 Cells. Kor. J. Pharmacogn. 2019:50(2);118-23.
  25. Hong SJ, Choi YJ, Lim HS, Son JB, Jung SS. Effect of herbal dentifrice on dental plaque and gingivitis. J Korean Acad Dent Health. 2001:25(4); 347-55.
  26. Peng HR. Dictionary of Traditional Chinese Medicine Prescriptions (Vol. 9). Beijing:Renminweisheng publisher. 1994:433.
  27. Peng HR. Dictionary of Traditional Chinese Medicine Prescriptions (Vol. 3). Beijing:Renminweisheng publisher. 1994:918, 1055-6.
  28. Peng HR. Dictionary of Traditional Chinese Medicine Prescriptions (Vol. 1). Beijing:Renminweisheng publisher. 1994:565.
  29. Peng HR. Dictionary of Traditional Chinese Medicine Prescriptions (Vol. 4). Beijing:Renminweisheng publisher. 1994:447-8.
  30. Herbal Formula Textbook Compilation Committee. Herbal Formula Science in Korean Medicine. Paju:Koonja Publisher. 2020:1507-11.
  31. Park SM, Lee TH, Zhao R, Kim YS, Jung JY, Park CA, Jegal KH, Ku SK, Kim JK, Lee CW, Kim YW, Cho IJ, An WG, Kim SC. Amelioration of inflammatory responses by Socheongryong-Tang, a traditional herbal medicine, in RAW 264.7 cells and rats. Int J Mol Med. 2018;41(5): 2771-83.
  32. Upadhyay J, Tiwari N, Ansari MN. Role of inflammatory markers in corona virus disease (COVID-19) patients: A review. Exp Biol Med (Maywood). 2020;245(15):1368-75. https://doi.org/10.1177/1535370220939477
  33. Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019;20(23):6008. https://doi.org/10.3390/ijms20236008
  34. Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J Pathol. 2001;159(2):387-97. https://doi.org/10.1016/S0002-9440(10)61708-7
  35. Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides. 2003;37(6):355-61. https://doi.org/10.1016/j.npep.2003.09.005
  36. Ramadan DE, Hariyani N, Indrawati R, Ridwan RD, Diyatri I. Cytokines and Chemokines in Periodontitis. Eur J Dent. 2020;14(3):483-95. https://doi.org/10.1055/s-0040-1712718
  37. Abul K. Abbas, Andrew H. Lichman. Cellular and Molecular Immunology (5th Ed). Philadelpia: Saunders. 2003:25, 282-8, 493, 507.
  38. Jirik FR, Podor TJ, Hirano T, Kishimoto T, Loskutoff DJ, Carson DA, Lotz M. Bacterial lipopolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells. J Immunol. 1989;142(1):144-7.
  39. Gulhar R, Ashraf MA, Jialal I. Physiology, Acute Phase Reactants. [Updated 2020 May 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519570/
  40. Alam MB, Ju MK, Kwon YG, Lee SH. Protopine attenuates inflammation stimulated by carrageenan and LPS via the MAPK/NF-kappaB pathway. Food Chem Toxicol. 2019;131:110583. https://doi.org/10.1016/j.fct.2019.110583
  41. Wang H, Huang W, Liang M, Shi Y, Zhang C, Li Q, Liu M, Shou Y, Yin H, Zhu X, Sun X, Hu Y, Shen Z. (+)-JQ1 attenuated LPS-induced microglial inflammation via MAPK/NFκB signaling. Cell Biosci. 2018;8:60. https://doi.org/10.1186/s13578-018-0258-7
  42. The Korean Society of Pathology. Pathology. Seoul:Komoonsa. 1995:71-104.
  43. Cho YH. Concepts of Human Physiology. Seoul: Bummoon Education. 2011:202.
  44. Park KK. Oral Biochemistry. Seoul:Koonja publishers. 1999:318-25.
  45. Lee SI. Cheonjin Prescription explanation. Seoul: Seongbosa. 1995:23.
  46. Seo WG, Pae HO, Oh GS, Kim NY, Kwon TO, Shin MK, Chai KY, Chung HT. The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW264.7 macrophages. J Ethnopharmacol. 2001;76:119-23. https://doi.org/10.1016/S0378-8741(01)00220-3
  47. Chiou WF, Chou CJ, Chen CF. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 2001;69:625-35. https://doi.org/10.1016/S0024-3205(01)01154-7
  48. Kawamata H, Ochiai H, Mantani N, Terasawa K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am J Chin Med 2000;28:217-26. https://doi.org/10.1142/S0192415X0000026X
  49. Jeremy S Paige, Samie R Jaffrey. Pharmacologic manipulation of nitric oxide signaling: targeting NOS dimerization and protein-protein interactions. Curr Top Med Chem. 2007;7(1):97-114. https://doi.org/10.2174/156802607779318253
  50. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333:664-6. https://doi.org/10.1038/333664a0
  51. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27): 2002-12. https://doi.org/10.1056/NEJM199312303292706
  52. Assumpcao CR, Brunini TMC, Matsuura C, Resende AC, Mendes-Ribeiro AC. Impact of the L-arginine-Nitric Oxide Pathway and Oxidative Stress on the Pathogenesis of the Metabolic Syndrome. Open Biochem J. 2008; 2:108-15. https://doi.org/10.2174/1874091X00802010108
  53. Higuchi M, Higashi N, Taki H, Osawa T. Cytolytic mechanism of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanism acts as synergistically as the major cytolytic mechanism of activated macrophages. J Immunol. 1990;144:1425-31.
  54. McDaniel ML, Kwon G, Hill JR, Marshall CA and Corbett JA. Cytokines and nitric oxides in islet inflammation and diabetes. Proc Soc Exp Biol Med. 1996;211:24-32. https://doi.org/10.3181/00379727-211-43950D
  55. Corbett JA, Mac Daniel ML. Intraislet release of interleukin-1 inhibits beta cell function by inducing beta cell expression of inducible nitric oxide syntheses. J Exp Med. 1995;181:559-68. https://doi.org/10.1084/jem.181.2.559
  56. Cetkovic-Cvrlje M and Eizirik DL. TNF and IFNγ potentiate the deleterious effects of IL-1β on mouse pancreatic islets mainly via generation of nitric oxide. Cytokine. 1994;6:399-406. https://doi.org/10.1016/1043-4666(94)90064-7
  57. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13(2):85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  58. Williams AJ, Dave JR, Tortella FC. Neuroprotection with the proteasome inhibitor MLN519 in focal ischemic brain injury: relation to nuclear factor kappaB (NF-kappaB), inflammatory gene expression, and leukocyte infiltration. Neurochem Int. 2006; 49(2):106-12. https://doi.org/10.1016/j.neuint.2006.03.018
  59. Kim MK, Kim DY. Anti-inflammatory Effect of an Ecklonia cava Ethanol Extract in Macrophage via Inhibition of the NF-κB/MAPK Signal Pathways. J Chitin Chitosan. 2016;21(4):236-41. https://doi.org/10.17642/jcc.21.4.2
  60. Shen J, Sakaida I, Uchida K, Terai S, Okita K. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci. 2005;77(13):1502-15. https://doi.org/10.1016/j.lfs.2005.04.004
  61. Park HY, Han MH, Park C, Jin CY, Kim GY, Choi IW, Kim ND, Nam TJ, Kwon TG, Choi YH. Anti-inflammatory effects of fucoidan through inhibition of NF-κB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food and Chemical Toxicology. 2011;49:1745-52. https://doi.org/10.1016/j.fct.2011.04.020
  62. Kim SM, Park EJ, Kim JY, Choi JH, Lee HJ. Anti-Inflammatory Effects of Fermented Lotus Root and Linoleic Acid in Lipopolysaccharide-Induced RAW 264.7 Cells. Life (Basel). 2020; 10(11):E293.
  63. Wang C, La L, Feng H, Yang Q, Wu F, Wang C, Wu J, Hou L, Hou C, Liu W. Aldose Reductase Inhibitor Engeletin Suppresses Pelvic Inflammatory Disease by Blocking the Phospholipase C/Protein Kinase C-Dependent/NF-kappaB and MAPK Cascades. J Agric Food Chem. 2020; 68(42):11747-57. https://doi.org/10.1021/acs.jafc.0c05102
  64. Rao CV, Verma AR, Gupta PK, Vijayakumar M. Anti-inflammatory and anti-nociceptive activities of Fumaria indica whole plant extract in experimental animals. Acta Pharm. 2007;57:491-8.
  65. Lee JH, Choi YH, Choi BT. The anti-inflammatory effects of 2 Hz electroacupuncture with different intensities on acute carrageenan-induced inflammation in the rat paw. Int J Mol Med. 2005;16:99-102.