• Title/Summary/Keyword: inflammation-related protein

Search Result 407, Processing Time 0.03 seconds

Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells

  • Cha, Jae Hoon;Kim, Woo Kyoung;Ha, Ae Wha;Kim, Myung Hwan;Chang, Moon Jeong
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.90-96
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Although the antioxidative effects of lycopene are generally known, the molecular mechanisms underlying the anti-inflammatory properties of lycopene are not fully elucidated. This study aimed to examine the role and mechanism of lycopene as an inhibitor of inflammation. METHODS/MATERIALS: Lipopolysaccharide (LPS)-stimulated SW 480 human colorectal cancer cells were treated with 0, 10, 20, and $30{\mu}M$ lycopene. The MTT assay was performed to determine the effects of lycopene on cell proliferation. Western blotting was performed to observe the expression of inflammation-related proteins, including nuclear factor-kappa B ($NF-{\kappa}B$), inhibitor kappa B ($I{\kappa}B$), mitogen-activated protein kinase (MAPK), extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 (p38 MAP kinase). Real-time polymerase chain reaction was performed to investigate the mRNA expression of tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Concentrations of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) were determined via enzyme-linked immunosorbent assays. RESULTS: In cells treated with lycopene and LPS, the mRNA expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, iNOS, and COX-2 were decreased significantly in a dose-dependent manner (P < 0.05). The concentrations of $PGE_2$ and NO decreased according to the lycopene concentration (P < 0.05). The protein expressions of $NF-{\kappa}B$ and JNK were decreased significantly according to lycopene concertation (P < 0.05). CONCLUSIONS: Lycopene restrains $NF-{\kappa}B$ and JNK activation, which causes inflammation, and suppresses the expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, COX-2, and iNOS in SW480 human colorectal cancer cells.

Molecular weight-associated cellular response to silk fibroin fragments demonstrated in MG63 cells

  • Jo, You-Young;Kweon, HaeYong;Kim, Seong-Gon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • In this study, changes in gene expression after administration of silk fibroin fragments ($size{\approx}30kDa$) were evaluated in MG63 cells using a cDNA microarray assay. In addition, the level of alkaline phosphatase (ALP) activity and cellular proliferation in the group administered moderately sized silk fibroin fragments ($size{\approx}30kDa$) (MSF) were compared to those in the group administered smaller silk fibroin fragments (size < 1 kDa) (SSF). The results of the cDNA microarray assay show increased expression of genes that are related to the cell cycle and inflammation. ALP, bone morphogenetic protein-7, bone morphogenetic protein receptor type IA, and runt-related transcription factor 2 exhibited significantly lower expression compared to control cells (fold ratio < 0.5). Relative ALP activity of the $100{\mu}g/mL$ MSF group was significantly lower than that of the SSF group (P < 0.05). Thus, the MSF group showed increased expression of genes associated with cellular proliferation and inflammation but decreased expression of genes associated with osteogenesis.

Anti-inflammatory effects of Agar free-Gelidium amansii (GA) extracts in high-fat diet-induced obese mice

  • Lee, Yunkyoung;Oh, Hyunhee;Lee, Myoungsook
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.479-485
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Gelidium amansii (GA) contains plenty of agars and various biological substances, which make them a popular functional food to control body weight in previous studies. Unlike previous studies focused on agar in GA, objectives of this study were to investigate the effects of agar-free GA extract (AfGAE) on preventive and treatment models by using diets-induced obese (DIO) C57BL/6J mice. MATERIALS/METHODS: AfGAE were used to test their effects on the prevention (Exp-1) and treatment (Exp-2) against obesity after pilot study in DIO mice. The weight changes of the body and fat tissues and protein expression related to lipid metabolism and inflammation as well as plasma lipid profile and insulin were detected. RESULTS: Although AfGAE did not prevent long-term DIO, it did increase the levels of anti-inflammatory cytokine production and lipolysis protein. We further evaluated various doses of AfGAE in preventive and treatment models. As a result, our findings suggested that an AfGAE administration as a preventive model might be a better approach to achieve its anti-inflammatory and lipolysis-promoting effects in DIO mice. CONCLUSION: Although future studies to investigate the target materials such as polyphenols in AfGAE are required, the result suggests that GA without agar might be a therapeutic tool to improve health conditions related to inflammation.

15-Hydroxyeicosatetraenoic Acid Inhibits Phorbol-12-Myristate-13-Acetate-Induced MUC5AC Expression in NCI-H292 Respiratory Epithelial Cells

  • Song, Yong-Seok;Kim, Man Sub;Lee, Dong Hun;Oh, Doek-Kun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.589-597
    • /
    • 2015
  • It has been reported that overexpression of MUC5AC induced by excessive inflammation leads to airway obstruction in respiratory diseases such as chronic obstructive pulmonary disease and asthma. 15-Hydroxyeicosatetraenoic acid (15-HETE) has been reported to have anti-inflammatory effects, but the role of 15-HETE in respiratory inflammation has not been determined. Therefore, the aim of this study was to investigate the effects of 15-HETE on MUC5AC expression and related pathways. In this study, phorbol-12-myristate-13-acetate (PMA) was used to stimulate NCI-H292 bronchial epithelial cells in order to examine the effects of 15-HETE. 15-HETE inhibited PMA-induced expression of MUC5AC mRNA and secretion of MUC5AC protein. Moreover, 15-HETE regulated matrix metallopeptidase 9 (MMP-9), mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK). In addition, 15-HETE decreased the nuclear translocation of specificity protein-1 (Sp-1) transcription factor and nuclear factor κB (NF-κB). Furthermore, 15-HETE enhanced the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ) as a PPARγ agonist. This activity reduced the phosphorylation of protein kinase B (PΚB/Akt) by increasing the expression of phosphatase and tensin homolog (PTEN). In conclusion, 15-HETE regulated MUC5AC expression via modulating MMP-9, MEK/ERK/Sp-1, and PPARγ/PTEN/Akt signaling pathways in PMA-treated respiratory epithelial cells.

Obesity and Obese-related Chronic Low-grade Inflammation in Promotion of Colorectal Cancer Development

  • Pietrzyk, Lukasz;Torres, Anna;Maciejewski, Ryszard;Torres, Kamil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4161-4168
    • /
    • 2015
  • Colorectal cancer (CRC) is a worldwide health problem, being the third most commonly detected cancer in males and the second in females. Rising CRC incidence trends are mainly regarded as a part of the rapid 'Westernization' of life-style and are associated with calorically excessive high-fat/low-fibre diet, consumption of refined products, lack of physical activity, and obesity. Most recent epidemiological and clinical investigations have consistently evidenced a significant relationship between obesity-driven inflammation in particular steps of colorectal cancer development, including initiation, promotion, progression, and metastasis. Inflammation in obesity occurs by several mechanisms. Roles of imbalanced metabolism (MetS), distinct immune cells, cytokines, and other immune mediators have been suggested in the inflammatory processes. Critical mechanisms are accounted to proinflammatory cytokines (e.g. IL-1, IL-6, IL-8) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$). These molecules are secreted by macrophages and are considered as major agents in the transition between acute and chronic inflammation and inflammation-related CRC. The second factor promoting the CRC development in obese individuals is altered adipokine concentrations (leptin and adiponectin). The role of leptin and adiponectin in cancer cell proliferation, invasion, and metastasis is attributable to the activation of several signal transduction pathways (JAK/STAT, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), mTOR, and 5'AMPK signaling pathways) and multiple dysregulation (COX-2 downregulation, mRNA expression).

Heme Oxygenase-1 : Its Therapeutic Roles in Inflammatory Diseases

  • Pae, Hyun-Ock;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • v.9 no.1
    • /
    • pp.12-19
    • /
    • 2009
  • Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the first and rate-limiting step in the oxidative degradation of free heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV), the latter being subsequently converted into bilirubin (BR). HO-1, once expressed during inflammation, forms high concentrations of its enzymatic by-products that can influence various biological events, and this expression is proven to be associated with the resolution of inflammation. The degradation of heme by HO-1 itself, the signaling actions of CO, the antioxidant properties of BV/BR, and the sequestration of ferrous iron by ferritin all concertedly contribute to the anti-inflammatory effects of HO-1. This review focuses on the anti-inflammatory mechanisms of HO-1 actions and its roles in inflammatory diseases.

Phelligridin D maintains the function of periodontal ligament cells through autophagy in glucose-induced oxidative stress

  • Kim, Ji-Eun;Kim, Tae-Gun;Lee, Young-Hee;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.5
    • /
    • pp.291-302
    • /
    • 2020
  • Purpose: The objective of this study was to investigate whether phelligridin D could reduce glucose-induced oxidative stress, attenuate the resulting inflammatory response, and restore the function of human periodontal ligament cells (HPDLCs). Methods: Primary HPDLCs were isolated from healthy human teeth and cultured. To investigate the effect of phelligridin D on glucose-induced oxidative stress, HPDLCs were treated with phelligridin D, various concentrations of glucose, and glucose oxidase. Glucose-induced oxidative stress, inflammatory molecules, osteoblast differentiation, and mineralization of the HPDLCs were measured by hydrogen peroxide (H2O2) generation, cellular viability, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot analyses. Results: Glucose-induced oxidative stress led to increased production of H2O2, with negative impacts on cellular viability, ALP activity, and calcium deposition in HPDLCs. Furthermore, HPDLCs under glucose-induced oxidative stress showed induction of inflammatory molecules (intercellular adhesion molecule-1, vascular cell adhesion protein-1, tumor necrosis factor-alpha, interleukin-1-beta) and disturbances of osteogenic differentiation (bone morphogenetic protein-2, and -7, runt-related transcription factor-2), cementogenesis (cementum protein-1), and autophagy-related molecules (autophagy related 5, light chain 3 I/II, beclin-1). Phelligridin D restored all these molecules and maintained the function of HPDLCs even under glucose-induced oxidative stress. Conclusions: This study suggests that phelligridin D reduces the inflammation that results from glucose-induced oxidative stress and restores the function of HPDLCs (e.g., osteoblast differentiation) by upregulating autophagy.

From Gut to Brain: Alteration in Inflammation Markers in the Brain of Dextran Sodium Sulfate-induced Colitis Model Mice

  • Do, Jongho;Woo, Jungmin
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.422-433
    • /
    • 2018
  • Objective: Neuropsychiatric manifestations like depression and cognitive dysfunction commonly occur in inflammatory bowel disease (IBD). In the context of the brain-gut axis model, colitis can lead to alteration of brain function in a bottom-up manner. Here, the changes in the response of the hypothalamic-pituitary-adrenal axis and inflammation-related markers in the brain in colitis were studied. Methods: Dextran sodium sulfate (DSS) was used to generate a mouse model of colitis. Mice were treated with DSS for 3 or 7 days and sacrificed. We analyzed the gene expression of brain-derived neurotrophic factor (BDNF), cyclooxygenase 2 (COX-2), and glial fibrillary acidic protein (GFAP), and the expression of GFAP, in the hippocampus, hypothalamus, and amygdala. Additionally, the levels of C-reactive protein (CRP) and serum cortisol/corticosterone were measured. Results: Alteration of inflammatory-related markers varied depending on the brain region and exposure time. In the hippocampus, COX-2 mRNA, GFAP mRNA, and GFAP expression were upregulated during exposure to DSS. However, in the hypothalamus, COX-2 mRNA was upregulated only 3 days after treatment. In the amygdala, BDNF and COX-2 mRNAs were downregulated. CRP and corticosterone expression increased with DSS treatment at day 7. Conclusion: IBD could lead to neuroinflammation in a bottom-up manner, and this effect varied according to brain region. Stress-related hormones and serum inflammatory markers, such as CRP, were upregulated from the third day of DSS treatment. Therefore, early and active intervention is required to prevent psychological and behavioral changes caused by IBD, and region-specific studies can help understand the precise mechanisms by which IBD affects the brain.

Effect of fermented sarco oyster extract on age induced sarcopenia muscle repair by modulating regulatory T cells

  • Kyung-A Byun;Seyeon Oh;Sosorburam Batsukh;Kyoung-Min Rheu;Bae-Jin Lee;Kuk Hui Son;Kyunghee Byun
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.406-422
    • /
    • 2023
  • Sarcopenia is an age-related, progressive skeletal muscle disorder involving the loss of muscle mass and strength. Previous studies have shown that γ-aminobutyric acid (GABA) from fermented oysters aids in regulatory T cells (Tregs) cell expansion and function by enhancing autophagy, and concomitantly mediate muscle regeneration by modulating muscle inflammation and satellite cell function. The fermentation process of oysters not only increases the GABA content but also enhances the content of branched amino acids and free amino acids that aid the level of protein absorption and muscle strength, mass, and repair. In this study, the effect of GABA-enriched fermented sarco oyster extract (FSO) on reduced muscle mass and functions via Treg modulation and enhanced autophagy in aged mice was investigated. Results showed that FSO enhanced the expression of autophagy markers (autophagy-related gene 5 [ATG5] and GABA receptor-associated protein [GABARAP]), forkhead box protein 3 (FoxP3) expression, and levels of anti-inflammatory cytokines (interleukin [IL]-10 and transforming growth factor [TGF]-β) secreted by Tregs while reducing pro-inflammatory cytokine levels (IL-17A and interferon [IFN]-γ). Furthermore, FSO increased the expression of IL-33 and its receptor IL-1 receptor-like 1 (ST2); well-known signaling pathways that increase amphiregulin (Areg) secretion and expression of myogenesis markers (myogenic factor 5, myoblast determination protein 1, and myogenin). Muscle mass and function were also enhanced via FSO. Overall, the current study suggests that FSO increased autophagy, which enhanced Treg accumulation and function, decreased muscle inflammation, and increased satellite cell function for muscle regeneration and therefore could decrease the loss of muscle mass and function with aging.