• 제목/요약/키워드: inference model

검색결과 1,167건 처리시간 0.027초

Real-time semantic segmentation of gastric intestinal metaplasia using a deep learning approach

  • Vitchaya Siripoppohn;Rapat Pittayanon;Kasenee Tiankanon;Natee Faknak;Anapat Sanpavat;Naruemon Klaikaew;Peerapon Vateekul;Rungsun Rerknimitr
    • Clinical Endoscopy
    • /
    • 제55권3호
    • /
    • pp.390-400
    • /
    • 2022
  • Background/Aims: Previous artificial intelligence (AI) models attempting to segment gastric intestinal metaplasia (GIM) areas have failed to be deployed in real-time endoscopy due to their slow inference speeds. Here, we propose a new GIM segmentation AI model with inference speeds faster than 25 frames per second that maintains a high level of accuracy. Methods: Investigators from Chulalongkorn University obtained 802 histological-proven GIM images for AI model training. Four strategies were proposed to improve the model accuracy. First, transfer learning was employed to the public colon datasets. Second, an image preprocessing technique contrast-limited adaptive histogram equalization was employed to produce clearer GIM areas. Third, data augmentation was applied for a more robust model. Lastly, the bilateral segmentation network model was applied to segment GIM areas in real time. The results were analyzed using different validity values. Results: From the internal test, our AI model achieved an inference speed of 31.53 frames per second. GIM detection showed sensitivity, specificity, positive predictive, negative predictive, accuracy, and mean intersection over union in GIM segmentation values of 93%, 80%, 82%, 92%, 87%, and 57%, respectively. Conclusions: The bilateral segmentation network combined with transfer learning, contrast-limited adaptive histogram equalization, and data augmentation can provide high sensitivity and good accuracy for GIM detection and segmentation.

퍼지 추론을 이용한 주차지원 시스템의 경로추종 운동제어 (Path Tracking Motion Control using Fuzzy Inference for a Parking-Assist System)

  • 김승기;장효환;김창환
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.1-9
    • /
    • 2009
  • A parking-assist system is defined that a driver adjusts vehicle velocity through brake pedal operation and parking-assist system controls the motion of the vehicle to follow a collision-free path. In this study, a motion control algorithm using Fuzzy inference is proposed to track a maneuvering clothoid parallel path. Simulations are performed under SIMULINK environments using MATLAB and CarSim for a vehicle model. As the vehicle model in MATLAB a bicycle model is used including lateral dynamics. The simulation results show that the path tracking performance is satisfactory under various driving and initial conditions.

Adaptive Neuro-Fuzzy Inference Systems for Indoor Propagation Prediction

  • Phaiboon, S.;Phokharatkul, P.;Somkurnpanich, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1865-1869
    • /
    • 2004
  • A new model for the propagation prediction for mobile communication network inside building is presented in this paper. The model is based on the determination of the dominant paths between the transmitter and the receiver. The field strength is predicted with adaptive neuro - fuzzy inference systems (ANFIS), trained with measurements. The advantage of the ANFIS with hybrid least squares and gradient descent algorithms is fast convergence compared with original neural network. The K-means algorithm for selection of training patterns is also used. Comparison of our predicted results to measurements indicate that improvements in accuracy over conventional empirical model are achieved.

  • PDF

Modelling CO2 and NOx on signalized roundabout using modified adaptive neural fuzzy inference system model

  • Sulaiman, Ghassan;Younes, Mohammad K.;Al-Dulaimi, Ghassan A.
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.107-113
    • /
    • 2018
  • Air quality and pollution have recently become a major concern; vehicle emissions significantly pollute the air, especially in large and crowded cities. There are various factors that affect vehicle emissions; this research aims to find the most influential factors affecting $CO_2$ and $NO_x$ emissions using Adaptive Neural Fuzzy Inference System (ANFIS) as well as a systematic approach. The modified ANFIS (MANFIS) was developed to enhance modelling and Root Mean Square Error was used to evaluate the model performance. The results show that percentages of $CO_2$ from trucks represent the best input combination to model. While for $NO_x$ modelling, the best pair combination is the vehicle delay and percentage of heavy trucks. However, the final MANFIS structure involves two inputs, three membership functions and nine rules. For $CO_2$ modelling the triangular membership function is the best, while for $NO_x$ the membership function is two-sided Gaussian.

Inference about Measure of Agreement in the General Mixture Model via Parameter Orthogonalization

  • Um, Jongseok
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.341-352
    • /
    • 2003
  • Collecting data through experiment, the observers are an import source of measurement error and the inference on the measure of agreement, say kappa, is necessary. The models commonly used are complicated general mixture model, which have many nuisance parameters. Orthogonalization of parameters reduce the effect of nuisance parameter. Orthogonalization of estimating function gives the same effect as the parameter orthogonalization. In this study, the method for orthogonalization of estimating equation is studied and applied to the Beta-binomial model to examine the properties of the estimate of kappa. As a result, the likelihood function is insensitive to the change of the nuisance parameter and bias is smaller than the result of m.1.e. when kappa has extreme values

Two Models to Assess Fuzzy Risk of Natural Disaster in China

  • Chongfu, Huang
    • 한국지능시스템학회논문지
    • /
    • 제7권1호
    • /
    • pp.16-26
    • /
    • 1997
  • China is one of the few countries where natural disaster strike frequently and cause heavy damage. In this paper, we mathematically develop two models to assess fuzzy risk of natural disaster in China. One is to assess the risk based on database of historical disaster effects by using information diffusion method relevant in fuzzy information analysis. In another model, we give an overview over advanced method to calculate the risk of release, exposure and consequence assessent, where information distribution technique is used to calculate basic fuzzy relationships showing historical experience of natural disasters, and fuzzy approximate inference is employed to study loss risk based on these basic relationships. We also present an examples to show how to use the first model. Result show that the model is effective for natural disaster risk assessment.

  • PDF

공학도를 위한 논리: '발표와 토론'을 위한 논리 교수.학습 모형 (Logic for Engineers: a teaching.learning model for logic in 'Presentation and Discussion')

  • 양은석
    • 논리연구
    • /
    • 제13권2호
    • /
    • pp.83-116
    • /
    • 2010
  • 이 글에서 우리는 토론 교육 특히 공학도를 위한 토론 교육에 필요한 논리 교수 학습 모형 을 제공한다. 이를 위하여 먼저 기존에 사용되고 있는 토론 관련 교재의 논증 개념과 논증 모형을 비판적으로 검토한다. 다음으로 토론에 필요한 기본 논증과 이에 대한 훈련 모형을 제공한다. 마지막으로 이공계 학생들 특히 공대 학생들을 위한 논증 방식 특히 토론에 사용될 논증 방식으로 가설 추론과 최선의 선택으로의 추론 모형을 제공한다.

  • PDF

An Integrated Mathematical Model for Supplier Selection

  • Asghari, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • 제13권1호
    • /
    • pp.29-42
    • /
    • 2014
  • Extensive research has been conducted on supplier evaluation and selection as a strategic and crucial component of supply chain management in recent years. However, few articles in the previous literature have been dedicated to the use of fuzzy inference systems as an aid in decision-making. Therefore, this essay attempts to demonstrate the application of this method in evaluating suppliers, based on a comprehensive framework of qualitative and quantitative factors besides the effect of gradual coverage distance. The purpose of this study is to investigate the applicability of the numerous measures and metrics in a multi-objective optimization problem of the supply chain network design with the aim of managing the allocation of orders by coordinating the production lines to satisfy customers' demand. This work presents a dynamic non-linear programming model that examines the important aspects of the strategic planning of the manufacturing in supply chain. The effectiveness of the configured network is illustrated using a sample, following which an exact method is used to solve this multi-objective problem and confirm the validity of the model, and finally the results will be discussed and analyzed.

Cylindrical Silicon Nanowire Transistor Modeling Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)

  • Rostamimonfared, Jalal;Talebbaigy, Abolfazl;Esmaeili, Teamour;Fazeli, Mehdi;Kazemzadeh, Atena
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1163-1168
    • /
    • 2013
  • In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) is applied for modeling and simulation of DC characteristic of cylindrical Silicon Nanowire Transistor (SNWT). Device Geometry parameters, terminal voltages, temperature and output current were selected as the main factors of modeling. The results obtained are compared with numerical method and a good match has been observed between them, which represent accuracy of model. Finally, we imported the ANFIS model as a voltage controlled current source in a circuit simulator like HSPICE and simulated a SNWT inverter and common-source amplifier by this model.

페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발 (Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system)

  • 김성호;이성룡;강정규
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF