• 제목/요약/키워드: inference(reasoning)

검색결과 231건 처리시간 0.027초

인메모리 기반 병렬 컴퓨팅 그래프 구조를 이용한 대용량 RDFS 추론 (Scalable RDFS Reasoning Using the Graph Structure of In-Memory based Parallel Computing)

  • 전명중;소치승;바트셀렘;김강필;김진;홍진영;박영택
    • 정보과학회 논문지
    • /
    • 제42권8호
    • /
    • pp.998-1009
    • /
    • 2015
  • 근래에 들어 풍부한 지식베이스를 구축하기 위한 대용량 RDFS 추론에 대한 관심이 높아지면서 기존의 단일 머신으로는 대용량 데이터의 추론 성능을 향상시키기에 한계가 있다. 그래서 분산 환경에서 의 RDFS 추론 엔진 개발이 활발히 연구되고 있다. 하지만 기존의 분산 환경 엔진은 실시간 처리가 불가능 하며 구현이 어렵고 반복 작업에 취약하다. 본 논문에서는 이러한 문제를 극복하기 위해 병렬 그래프 구조 를 사용한 인-메모리 분산 추론 엔진 구축 방법을 제안한다. 트리플 형태의 온톨로지는 기본적으로 그래프 구조를 가지고 있으므로 그래프 구조 기반의 추론 엔진을 설계하는 것이 직관적이다. 또한 그래프 구조를 활용하는 오퍼레이터를 활용하여 RDFS 추론 규칙을 구현함으로써 기존의 데이터 관점과 달리 그래프 구조의 관점에서 설계할 수 있다. 본 논문에서 제안한 추론 엔진을 평가하기 위해 LUBM1000(1억 3천 3백만 트리플, 17.9GB), LUBM3000(4억 1천 3백만 트리플, 54.3GB)에 대해 추론 속도를 실험을 하였으며 실 험결과, 비-인메모리 분산 추론 엔진보다 약 10배 정도 빠른 추론 성능을 보였다.

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Fault Diagnostic System Based on Fuzzy Time Cognitive Map

  • Lee, Kee-Sang;Kim, Sung-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.62-68
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. Authors have already proposed a diagnostic system based on FCM to utilized to identify the true origin of fault by on-line pattern diagnosis. In FCM based fault diagnosis, Temporal Associative Memories (TAM) recall of FCM is utilized to identify the true origin of fault by on-line pattern match where predicted pattern sequences obtained from TAM recall of fault FCM models are compared with actually observed ones. In engineering processes, the propagation delays are induced by the dynamics of processes and may vary with variables involved. However, disregarding such propagation delays in FCM-based fault diagnosis may lead to erroneous diagnostic results. To solve the problem, a concept of FTCM(Fuzzy Time Cognitive Map) is introduced into FCM-based fault diagnosis in this work. Expecially, translation method of FTCM makes it possible to diagnose the fault for some discrete time. Simulation studies through two-tank system is carried out to verify the effectiveness of the proposed diagnostic scheme.

  • PDF

Logical Reasoning and Emotional Response System using Structured Association Technique

  • Uozumi, Takashi;Kudo, Yasuo;Oobayashi, Yoshihide;Munakata, Tsunetsugu
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2002년도 춘계학술대회 논문집
    • /
    • pp.30-33
    • /
    • 2002
  • There are several methods to implement the logical machine reasoning such as a frame theory and a production system of artificial intelligence. And these algorithms can explain the obtained result through the inference processes. However, emotional (KANSEI) patterns are not so easily implement. One of reason is that some emotional expression is the result of process from unconscious level to conscious level, and not easily identified the original unconscious causes. Therefore, a function of KANSEI database needs to structuralize unconscious level. Our approach is to develop the computerized counseling support system which can structuralize the unconscious brain functions from the view point of the psychology with focusing physiological and emotional responses. Especially, development of the algorithm that can form the network from unconscious to conscious using the image recollection is the application of the structured association technique (SAT). The developed system was implemented on the Web using CGI and emotional network database.

  • PDF

퍼지 추론 기반의 유전알고리즘 선택 연산자 (Fuzzy Reasoning based Selection Operator for Genetic Algorithm)

  • 서기성;현수환
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.116-121
    • /
    • 2008
  • 본 논문은 퍼지추론을 통해 개체의 유사성과 적합도의 종합적 평가를 이용한 유전알고리즘의 선택연산자를 제안한다. 일반적으로 많이 쓰이는 적합도에 의한 선택 방법에 비해서 유사성에 대한 요소를 추가함으로써 조기에 수렴하는 현상의 감소와 성능향상을 얻을 수 있다. 또한 기존의 세대형(generational)에서 점진형(steady-state)으로 진화 수행방식의 변형을 통해 보조적인 향상을 제공할 수 있다. 제안된 방법을 f3deceptive 와 f5trap 등의 기만적 문제에 대해서 실험하였으며, 다른 연산자를 이용한 결과에 비하여 우수한 성능을 얻을 수 있었다.

엘리버이터 군관리 시스템을 위한 예견퍼지 제어 알고리즘에 관한 연구 (A Study on Predictive Fuzzy Control Algorithm for Elevator Group Supervisory System)

  • 최돈;박희철;우광방
    • 대한전기학회논문지
    • /
    • 제43권4호
    • /
    • pp.627-637
    • /
    • 1994
  • In this study, a predictive fuzzy control algorithm to supervise the elevator system with plural cars is developed and its performance is evaluated. The proposed algorithm is based on fuzzy in-ference system to cope with multiple control objects and uncertainty of system state. The control objects are represented as linguistic predictive fuzzy rules and simplified reasoning method is utilized as a fuzzy inference method. Real-time simulation is performed with respect o all possible modes of control, and the resultant controls ard predicted. The predicted rusults are then utilized as the control in-puts of the fuzzy rules. The feasibility of the proposed control algorithm is evaluated by graphic simulator on computer. Finallu, the results of graphic simulation is compared with those of a conventional group control algorighm.

  • PDF

Fuzzy Control as Self-Organizing Constraint-Oriented Problem Solving

  • Katai, Osamu;Ida, Masaaki;Sawaragi, Tetsuo;Shimamoto, Kiminori;Iwai, Sosuke
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.887-890
    • /
    • 1993
  • By introducing the notion of constraint-oriented fuzzy inference, we will show that it provides us ways of fuzzy control methods that has abilities of adaptation, learning and self-organization. The basic supporting techniques behind these abilities are“hard”processing by Artificial Intelligence or traditional computational framework and“soft”processing by Neural Network or Genetic Algorithm techniques. The reason that these techniques can be incorporated to fuzzy control systems is that the notion of“constraint”itself has two fundamental properties, that is, the“modularity”property due to its declarativeness and the“logicality”property due to its two-valuedness. From the former property, the modularity property, decomposing and integrating constraints can be done easily and efficiently, which enables us to carry out the above“soft”processing. From the latter property, the logicality property, Qualitative Reasoning and Instance Generalization by Symbolic Reasoning an be carried out, thus enabling the“hard”processing.

  • PDF

퍼지추론과 혼합기법을 적용한 적응적 워터마킹 알고리즘 (Adaptive Watermarking Algorithm Using Fuzzy Reasoning and Hybrid Scheme)

  • 김윤호;김태곤
    • 한국항행학회논문지
    • /
    • 제12권1호
    • /
    • pp.74-81
    • /
    • 2008
  • 본 연구에서는 공간영역특성의 컬러정보와 주파수영역 기반의 시각특성 요소를 이용한 혼합 워터마킹 기법을 제안하였다. 제안한 방법은 공간영역을 선택하여 컬러의 색차 정보를 분석하여 공간적으로 분포되어있는 컬러정보를 계산하고, 주파수 변환영역을 통해 인간시각에 덜 민감한 계수블럭을 분석하여 인간의 시각특성 파라미터 값들을 구하였다. 또한 중요한 특징 중에 하나는 퍼지추론 기법을 시각시스템 특성에 적용하여 워터마크가 삽입될 최적의 부 대역을 선택하도록 설계하였다. 계수분포에 따른 적응적 워터마크를 삽입한 후, 비가시성과 강인성 평가 실험을 수행한 결과 다양한 종류의 공격유형에 대하여 제안한 방법의 타당성을 입증 하였다.

  • PDF

인과적 사슬구조에서의 범주기반 속성추론 (Category-based Feature Inference in Causal Chain)

  • 최인범;이형철;김신우
    • 감성과학
    • /
    • 제24권1호
    • /
    • pp.59-72
    • /
    • 2021
  • 개념과 범주는 관찰하지 못한 속성을 추론할 수 있는 기반을 제공한다. 무의미 속성을 사용한 범주기반 속성추론 연구들은 범주 및 속성의 유사성이 추론을 설명하는 핵심 요인이라는 것을 제안했다(Rips, 1975; Osherson et al., 1990). 이후 연구들은 사람들의 사전지식이 범주기반 추론에 막대한 영향을 미치며 심지어 유사성 효과가 완전히 사라지는 경우도 있음을 보고했다. 본 연구는 범주 속성들이 사전지식의 한 종류인 인과적 지식에 의해 사슬구조로 연결되었을 때의 범주기반 속성추론을 검증했으며 그 결과를 예측하는 속성추론모형을 제안했다. 참가자들은 네 개의 속성들이 사슬구조를 이루는 인과적 범주를 학습한 뒤 해당 범주의 다양한 범주 예시들의 숨겨진 속성에 대한 추론을 실시했다. 그 결과 인과적으로 직접 연결된 속성뿐만 아니라 다른 속성 노드에 의해 차폐된 속성들도 추론에 영향을 미치는 비독립성이 나타났다(인과적 마코프 조건의 위배). 인과모형이론(Sloman, 2005)에 기반한 속성추론모형을 적용하여 참가자들의 추론을 모델링한 결과 인과적 연결의 직접 효과뿐만 아니라 간접 효과 즉 인과추론의 비독립성도 예측하는 것으로 나타났다. 다만 간접적으로 연결된 속성들은 인과적 거리와 무관하게 참가자들의 추론평정에 동일하게 영향을 미쳤지만 모형은 거리가 멀어짐에 따라 추론에 미치는 영향이 작아짐을 예측했다.

퍼지규칙의 신경망 학습을 통한 스케치 특징점 추출 (Sketch Feature Extraction Through Learning Fuzzy Inference Rules with a Neural Network)

  • 조성목
    • 한국정보처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.1066-1073
    • /
    • 1998
  • 본 논문에서는 신경회로망을 사용하여 영상에 존재하는 스케치 특징점을 효과적으로 추출할 수 있는 퍼지규칙을 발생시킨다. 이를 위한 퍼지 입력변수로 DBAH(difference between arithmetic mean and harmonic mean)오 특징점정도가 정의된다. DBAH는 국부 밝기를 반영하는 특성을 가지며, 매우 어두운 영역에서의 작은 밝기변화에서는 낮은 출력을 나타내는 장점을 가진다. 퍼지규칙의 신경망학습을 통한 스케치 특징점을 추출은 특징점 추출을 위한 퍼지규칙의 설정에 효과적인 방법이 될 수 있음이 증명된다.

  • PDF