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Abstract: By introducing the notion of constraint-oriented
fuzzy inference, we will show that it provides us ways of fuzzy
control methods that has abilities of adaptation, learning and
self-organization. The basic supporting techniques behind
these abilities are "hard" processing by Artificial Intelligence or
traditional computational framework and "soft" processing by
Neural Network or Genetic Algorithm techniques. The reason
that these techniques can be incorporated to fuzzy control
systems is that the notion of "constraint” itself has two
fundamental properties, that is, the "modularity” property due
to its declarativeness and the "logicality” property due to its
two-valuedness. From the former property, the modularity
property, decomposing and integrating constraints can be done
easily and efficiently, which enables us to carry out the above
"soft" processing. From the latter property, the logicality
property, Qualitative Reasoning and Instance Generalization by
Symbolic Reasoning can be carried out, thus enabling the
"hard" processing.

1. Introduction

We have already introduced a "constraint-oriented way of
treating fuzziness" which can be applied to various kinds of
problem solving including control and planning problems, etc
[1], [2]. In this paper, we will first show the whole scope of
our constraint-oriented approach for fuzzy information
processing, particularly for the case of fuzzy control, and then
show that this framework will provides us ways of fuzzy
control that has abilities of adaptation, learning and self-
organization. The basic supporting techniques behind these
abilities are "hard" processing by Artificial Intelligence and
traditional computational framework and “soft" processing by
Neural Network and Genetic Algorithm techniques. The reason
that these techniques can be incorporated to fuzzy control
systems is that the notion of constraints itself has two
fundamental properties, that is, the "modularity” property due
to its declarativenzss and the "logicality" property due to its
two-valuedness. From the former property, the modularity
property, decomposing and integrating constraints can be
carried out quite easily and efficiently, which enables us to do
the above "soft" processing. From the latter property, the
logicality property, Qualitative Reasoning and Instance
Generalization by Symbolic Reasoning can be carried out, thus
enabling the "hard" processing.

2. The Whole Scope of Constraint-Oriented Way of
Fuzzy Control

Fig. 1 shows the way how the above mentioned abilities can
be substantiated for the case of fuzzy control. Suppose that we
are given with experience of control, that is, a set of instances
of observation-action pairs with their results and evaluation.
Then, instance generalization by the methods of "Qualitative
Reasoning (QR)" or "Instance Generalization (IG)" can be

applied to yield generalized constraint regions on observation-
action pairs. Their decomposition and further selection and
refinement by Neural Network (NN) based techniques yield
"betweenness rules" which are also introduced by the authors
as a general kind of constraint-oriented rules and are the origin
of constraint-oriented fuzzy inference {3]. More precisely, the
decomposition of the betweenness rules yield "constraint-
interval fuzzy inference rules” that are also introduced by the
authors. Moreover, we have another route to derive the
betweenness rules, that is, by the use of pairing of the instances
which is assured to satisfy certain constraint conditiuons
through certain methods of Qualitative Reasoning and Instance
Generalization, and then by the use of Neural Network-based
refinement, we have the betweenness rules [4], [S].

These constraint-interval fuzzy inference rules together
with the values of observation variables, enable us to carry out
constraint-interval fuzzy inference to derive "interval
constraints” on the values of the actions, i.e., the control
variables, whose conjunctive and/or disjunctive integration
together with defuzzification yield the values of the control
variables through which generation of next action is done
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yielding another instance of observation-action-result triplet.
Moreover, for complex control problems, we can decompose
the goal of control yielding constraint regions on observation-
action pairs from which we "decouple” the control problem into
more simple subproblems.

Also, Genetic Algorithm (GA) techniques can be applied
directly to the collection of constraint-interval rules, that is
regarded to be constituting a pool of "chromosomes," i.e., a
genetic pool, which are selected, modified and reproduced to
refine the pool and the activated values of control variables by
the observation are used to derive the value of control variables
whose response from the environment is evaluated so as to be
used in the GA-based selection, modification and refinement of
the chromosomes {6].

3. Modularity and Logicality of the Constraint-
Oriented Fuzzy Control Schemes

In this section, we will explain several key concepts in our
framework. The first one is the notion of "constraint-interval
fuzzy set." As shown in Fig. 2(a), it is given as an ordered
collection of crisp intervals on the universe of discourse each of
which represents a constraint called "constraint-interval”.
Namely, the grade axis (in the traditional Fuzzy Set Theory) is
now regarded to be an ordinal scale axis, hence the sets in Fig.
2(b) are regarded to be the same as the one in Fig. 2(b).

Fuzzy inference rules whose "if (antecedent)” and "then
(consequent)" parts are both regarded to be constraint-interval
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Fig. 4 Betweenness rule and its acquisition by Double Instance
Generalization (DIG)

fuzzy sets are called "constraint-interval fuzzy inference rule”
which says that if a variable s is in constraint-interval Si, then a
variable f should be in the constraint-interval Fi fori=1,2, ...,
n, as shown in Fig. 3. In this kind of rule, we have three
typical rules, that is, type I, type II and type III rules. The
former two types of rules are used to confine the permissible
area of the values of control variables and hence are called
"confining" rules. The latter type of rule, i.e. type IIl rule, is
used to suggest the desirable area of control and is called "goal-
seeking” rule.

More general constraint-oriented rules are given as
betweenness rules such as if s is between sl and s2, then f
should also be between f1 and 2, which is written as

bet(sl: s2, s3) --> bet(fl: f2, f3).

This kind of rule can be derived by generalizing instance
information, particularly by the method of "Double Instance
Generalization (DIG)" introduced by the authors [3]. For
instance, if we are informed of the qualitative shape or tendency
of the values V(s, f) of the pair of the values of s and f as
shown in Fig. 4, we can derive the following kinds of general
rules from the triplets (s2, £2, V(s2, f2)) and (s3, {3, V(s3, f3))
such as

bet(sl: 52, s3) & bet(fl: 2. f3) & (s2 <353 & f2 <f3)
—> bet(V(sl, f1): V(s2, 12), V(s3, f3)).

Thus, for assuring the least value V(sl, fl) of the observation-
action pair (sl, f1), we will arrive at the following rule of
control:

if bet(sl:s2,s3) and 52 <s3 & f2 < f3 hold,
then set fl such that bet(fl: f2, f3) holds,

where < represent the partial order on s, which is sometimes
given as a product of the orders on componential variables such
as

s < s = 5 <5 forj=12, .. n

Also, the betweenness relation is sometimes given as

bet(sl: s2,53) = s2<sl<s3 & s3<s2< sl
Thus the betweenness rule given above is reduced to the

following constraint-interval fuzzy inference rule:

ifs2j<slj <s3j,j=12 .., nand f2 < f3 hold,
then set fl such that f2 < fl < f3 hold.

Suppose that we are given with a crisp constraint region on the
pair of s and f as shown in Fig. 5. Then, decomposition of
this region into rectangular areas yields type I and type II rules
as shown in the figure.
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Fig. 5 Approximation of a crisp constraint by a collection of
cofining (Type I & Type II) rules

Along with the ways mentioned above, we obtain the
following procedure for deriving fuzzy control which assures
the least value of the result of control.

(1) Select the instances of experience which have
sufficiently good results.

(2) Delete the instances which are subsumed by other
instances.

(3) Search for the pairing of the instances to compose
constraint areas.

(4) If the constraint is of multiple levels, that is graded, we
also have to organize the obtained area among different levels.

This selection can be carried out by Hopfield Network or
Boltzmann Machine with an energy function evaluating the area
of coverage with preferably less number of rectangles, that is
intervals, having better continuity among different levels of
constraints [4].

4. Decoupled Fuzzy Control Scheme for Cart-Pole
Systems

The modularity of constraints enables the "decomposition”
and "integration” of constraints. For instance, the control of a
cart-pole system can be decomposed into that of the pole and
that of the cart. The respective fuzzy inference on each side is
then integrated by using "AND" composition to derive the
constraint interval fuzzy set on the control variable, the external
force to the cart, which is then defuzzified to yield the exact
value of the control variable.

We set two kinds of goals on the cart and the pole, ie.,
confining rule and goal-seeking rule.

(Cg): goal-seeking for the cart,
c:
(Cc): confining the cart,

(Pg): goal-seeking for the pole,
Gp:
(Pc): confining the pole,

The confining rule limit the move of the cart or the pole in
a certain prespecified region, hence it permits their swinging
motions, while the goal-seeking rule insists on their convergent
behavior to the origin of the rail or to the vertical position of the
pole. Thus we will have the following four cases of the goal of
control:

case (1): (Cg) & (Pg)
case (2): (Cg) & (Pc)
case (3): (Cc) & (Pg)
case (4): (Cc) & (Pc)

The result of control is shown in Fig. 6. In case (1),
the pole and the cart respectively insist on their own goal-
secking activities, hence the compromise between them results
in their swinging motions from left to right as shown here. In
this case, the behavior of the system is rather stable; it is seldom
that the cart runs out of the rail or the pole falls down unless the
initial condition is too severely set. In case (2), the pole insists
on its own goal-seeking activity and the cart accommodates or
adapts itself to the pole's behavior, hence the pole is held
vertically and the cart swings smoothly right and left by using
the full range of the rail. In case (3), on the contrary, the pole
accommodates itself to the activity of the cart which results in
so tight a condition that it is impossible to prevent the pole from
falling down. Hence both of them move rather rapidly at first
but are stopped suddenly by the falling down of the pole in the
early stage. In case (4), both of them accommodate themselves
to each other's behavior, hence they move very smoothly. The
range of the cart movement is a bit small compared to that of
case (3).
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Fig. 6 The beheaviors of the cart-pole system
by decoupled control

5. Application of Genetic Algorithm Techniques for
Constructing Fuzzy Control Systems

As mentioned in Section 2, the collection of constraint-
interval fuzzy inference rules can be refined by the use of
Genetic Algorithm due to the modularized structures of fuzzy
rules. In Genetic Algorithm, trial and error experiences are
used to refine the population of solution candidates which are
coded into sequences of symbols called chromosomes. The
refinement of the population is done through the process which
is derived from analogy to the evolutional genetic processes in
creatures. These chromosomes are evaluated to calculate their
degree of fitness to the environment (that is, the given
problem). These chromosomes are then selected and
reproduced by referring to their fitness values. A crossover
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between selected chromosomes subsequently takes place
yielding the chromosomes, some of which are expected to be
better than the original ones. Finally, mutation on the
chromosomes ts done to yield novel chromosomes. The whole
process of this evolution can be regarded as a multi-point search
for the optimal solution. The crossover operation shifts the
points of search in a global fashion, while the mutation
operation does so in a local fashion [6].

We regard each componential crisp constraint-interval rule
as a chromosome, that is, we will adopt the Michigan approach
instead of the Pittsburgh approach . In Pittsburgh approach,
the whole inference system itself is coded as a chromosome,
thus the size of the chromosomes becomes huge compared to
that in the former approach. The evolutional operations, on the
contrary, becomes complex in the Michigan approach compared
to the the Pittsburgh approach. The main reason for adopting
the former approach, the Michigan approach, is that we are
searching for a method that will yield self-organizing
mechanisms in the constraint-interval fuzzy inference systems.
The self-organization is carried out by linking componential
constraint-interval rules among different levels to yield a
constraint-interval fuzzy rule.

In the Michigan approach, we have to evaluate the
contribution of each fragmental componential rule making up
the evolutional operations in the Michigan approach more
difficult to be carried out than that of the Pittsburgh approach.
Particularly, for the case of production systems for control, the
evaluation on the whole control actions is usually done after a
sequence of actions is applied, hence very complicated
evaluation algorithms such as Bucket Brigade Algorithm are
used. However, in our case, we use instantaneous evaluation
of the control.

We have applied this method to the cart-pole control
problem where the cart position is disregarded. The crossover
probability and mutation probability are set as 0.6 and 0.01,
respectively, and the number of chromosomes is set to be 90.
The initial condition is set randomly in the region: -04 < 8 <
04, -04 < 8<04.

We obtained various constraint-interval fuzzy inference
rules ranging from type I to type III, that is, we have a large
amount of diversity of chromosomes. This means that trial and
error experience is still insufficient for converging to the
optimal control rules. However, this diversity is also the origin

of the adaptability of this system. Fig. 7 shows the obtained
value of control (external force to the cart) versus various
values q and q. It is observed that there still remains the area
which has to be learned. This happens due to that the advance
of learning incidentally hides this dangerous area from the
learning system.

In Genetic Algorithm process, the fitness value of each
chromosomes is calculated according to value V(s, f) of the pair
of s and f which is estimated by incremental revision by the
following way:

Vis, f) = V(s) - C(f) - V(s(s.)),
V(s) = min{V(s, f) + C(f)}.
f
where V(s), C(f), and s(s, f) stand for the value of of being at
s, the cost of using f, and the next state of s after applying f,

respectively. Fig. 8 shows the estimated value of V(s), ie.,
Vs, 0).

V) §

Fig. 8 GA-based estimation of V(8 , 6 ), the minimum
cost to attain the origin (0,0)

6. Conclusion

We have shown the reason and ways why and how the
modularity and logicality properties of our constraint-oriented
fuzzy control can be incorporated to efficient and effective ways
of fuzzy control which can be constructed in a top-down and/or
bottom-up manner by utilizing its learning and self-organizing
and adaptivity abilities,
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