• 제목/요약/키워드: inertial optical navigation sensor

검색결과 10건 처리시간 0.025초

광학식 3차원 좌표측정장치를 이용한 관성항법센서와 기체의 정렬기법 (Alignment of Inertial Navigation Sensor and Aircraft Fuselage Using an optical 3D Coordinate Measuring Device)

  • 김정호;이대우
    • 한국항공우주학회지
    • /
    • 제47권1호
    • /
    • pp.41-48
    • /
    • 2019
  • 본 논문은 광학적인 방법을 통해 얻은 3차원 좌표들을 이용하여 항공기 동체와 관성항법센서를 정렬하는 방법에 대하여 다루고 있다. 기존에 가공되어 있는 마운트 홀의 제작 정확도를 신뢰하고 장착하던 관행에서 나아가 관성항법센서의 좌표계와 항공기 동체의 기준좌표계를 보다 정확하게 정렬하기 위한 방법에 대해 소개하고 있으며, 실현가능성을 검증하기 위해 실제 3차원 좌표측정장치의 오차 수준을 반영한 시뮬레이션을 통해 정렬 성능을 검증하였다. 또한 광학센서와 관성항법센서의 최적화 기법 기반 정렬 방법을 기술하였다.

영상유도수술을 위한 광학추적 센서 및 관성항법 센서 네트웍의 칼만필터 기반 자세정보 융합 (Kalman Filter Baded Pose Data Fusion with Optical Traking System and Inertial Navigation System Networks for Image Guided Surgery)

  • 오현민;김민영
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.121-126
    • /
    • 2017
  • Tracking system is essential for Image Guided Surgery(IGS). Optical Tracking System(OTS) is widely used to IGS for its high accuracy and easy usage. However, OTS doesn't work when occlusion of marker occurs. In this paper sensor data fusion with OTS and Inertial Navigation System(INS) is proposed to solve this problem. The proposed system improves the accuracy of tracking system by eliminating gaussian error of the sensor and supplements the disadvantages of OTS and IMU through sensor fusion based on Kalman filter. Also, sensor calibration method that improves the accuracy is introduced. The performed experiment verifies the effectualness of the proposed algorithm.

전자-광학센서를 이용한 스트랩다운 관성항법장치의 보정기법 (A SDINS Compensation Scheme Using Electro-Optical Sensor)

  • 임정빈;임유철;유준
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.509-515
    • /
    • 2006
  • This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System(SDINS) using electro-optical sensor. The proposed scheme uses the position or the attitude information from the sensor. For each case, Kalman filter model is derived and implemented. To show the effectiveness of the present compensation scheme, computer simulations have been carried out resulting in the boundedness of position and attitude errors.

정밀 행성 착륙을 위한 지형 보조 관성 항법 연구 (Terrain Aided Inertial Navigation for Precise Planetary Landing)

  • 정보영;최윤혁;조수장;방효충
    • 한국항공우주학회지
    • /
    • 제38권7호
    • /
    • pp.673-683
    • /
    • 2010
  • 본 논문에서는 정밀 행성 착륙을 위해 광학센서와 관성항법시스템을 이용한 지형보조 관성항법 시스템을 구현하였다. 또한 측정된 지형 데이터와 사전에 탑재한 지형 데이터간의 특징점 추출, 매칭, 추적의 영상 처리 과정을 수행하였고 이를 통해 특징점의 좌표를 추출할 수 있다. 반복 확장칼만필터를 이용한 항법 시스템은 기존 관성 항법 장치의 항법 오차 누적을 보상하여 보다 정밀한 항법 정보를 제공한다. 이는 향후 착륙선의 유도 및 제어 법칙과 결합하여 정밀 행성 착륙을 위한 시스템 구현에 적용이 가능하다.

IOC를 사용한 광파이버 자이로 (Fiber Optic Gyroscope using IOC)

  • 김인수;김요희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1843-1845
    • /
    • 1998
  • Gyroscope is a very important core sensor as a rotation sensor in inertial space, in inertial guidance and navigation system on aeronautics. Plane, vessel and so on for civilian and millitary applications. Research and development of fiber optic gyroscope began in 1976 and focused on improving the gyroscope's sensitivity to rotation. bias performance and reducing noise. We have developed a Interferometric Fiber Optic' Gyroscope using a integrated-optic-circuit (IOC), which is operating with closed-loop electronic circuit. This paper describes the scheme of optical part and electronic part and also test results of this fiber optic gyroscope using a integrated-optic-circuit (IOC). The performance have been achieved as long-term bias drift of $1.73^{\circ}/h$.

  • PDF

두 개의 광류센서를 이용한 소형무인로봇의 위치 추정 기술 (Localization with Two Optical Flow Sensors for Small Unmanned Ground Vehicles)

  • 허진욱;강신천;현동준
    • 한국군사과학기술학회지
    • /
    • 제16권2호
    • /
    • pp.95-100
    • /
    • 2013
  • Localization is very important for the autonomous navigation of Unmanned Ground Vehicles; however, it is difficult that they have a precise Inertial Navigation System(INS) sensor, especially Small Unmanned Ground Vehicle(SUGV). Moreover, there are some condition such as denial of global position system(GPS), GPS/INS integrated system is not robust. This paper proposes the estimation algorithm with optical flow sensor and INS. Being compared with previous researches, the proposed algorithm is suitable for skid steering vehicles. We revised the measurement model of previous research for the accuracy of side direction position. Experimental results were performed to verify the algorithm, and the result showed an excellent performance.

전광파이버형 광파이버 자이로 (All-Fiber Optic Gyroscope)

  • 김인수;김요희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1840-1842
    • /
    • 1998
  • Gyroscope is a very important core sensor, as a rotation sensor in inertial space, in inertial guidance and navigation system on aeronautics, plane, vessel and so on for civilian and millitary applications. Mechnical gyroscopes, adopting a principle of spinning a top, have been used in many application system. These mechnical gyroscopes need high power consumption, long warming time and complicated peripheral devices. But fiber-optic gyroscopes, based on the Sagnac effect, have novel advantages as small volume. simple scheme, low power consumption and high reliability. So we have developed a Intermediate grade All-fiber Optic Gyroscope, which has open-loop and minimum reciprocal configuration scheme. We have designed feedback circuits for stability of amplitude and phase using four lock-in amplifier(LIA) circuits and also used for noise limitation. This paper describes the scheme of optical part and electronic part and also test results of this all-fiber optic gyroscope. The performance have been achieved as long-term bias drift of $9.54^{\circ}/h$, random walk of $0.0317^{\circ}/\sqrt{h}$ and dynamic range of ${\pm}150\;deg/s$.

  • PDF

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.