• Title/Summary/Keyword: inelastic design

Search Result 437, Processing Time 0.021 seconds

Seismic Improvement of Staggered Truss Systems using Buckling Restrained Braces (비좌굴 가새를 이용한 스태거드 트러스 시스템의 내진성능향상)

  • Kim, Jin-Koo;Lee, Joon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.11-19
    • /
    • 2006
  • In this paper the seismic performances of 4, 10, and 30-story staggered truss systems (STS) were evaluated by observing the force-displacement relationship up io failure. The results were compared with the seismic performance of conventional moment resisting frames and braced frames. According to the analysis results, the STS showed relatively satisfactory lateral load resisting capability. However, in the mid- to high-rise STS, plastic hinges formed first at the chords were transferred to vertical members of the vierendeel panels, which formed a week link and subsequently leaded to brittle collapse of the structure. Therefore to enhance the ductility of STS it would be necessary to reinforce the vertical bracing members of the virendeel panels so that the plastic hinges, once toned in cord members of a virendeel panel, spread out to virendeel panels of neighboring stories.

Degradation Characteristics of Symmetric Unbraced Steel Frames According to Variations of Member Stiffness and Axial ratio (축력비 및 부재강성에 따른 강구조 대칭형 비가새 골조의 열화특성)

  • Lee, Myung-Jae;Kim, Hee-Dong;Lim, Yoo-Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.327-335
    • /
    • 2011
  • This study has two objectives: (1) to evaluate the degradation characteristics of symmetric unbraced steel frames by using analytical approach, and (2) to suggest equation which can approximately estimate the effect of degradation during the schematic design stage. For the analytical approach, the refined plastic hinge method with an arc length algorithm was adopted. The subject of analysis was one story one-bay, multistory one-bay, and multistory three-bay unbraced steel frames. The main parameters of the analytical approach include the stiffness ratio of column to beam and the axial force ratio. The study led to the following conclusions. The normalized stiffness of degradations is affected by both stiffness ratio of column to beam and the axial load ratio; however, the major influence on degradations is the axial force ratio. The equation, which can approximately estimate the effect of degradation, was suggested together with the research results.

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.

The Influence of the Application Methods of Direct Analysis Method for the Evaluation of Frame Stability (골조 안정성 평가를 위한 직접해석법의 적용 방법에 따른 영향)

  • Kim, Hee-Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.293-303
    • /
    • 2010
  • The purpose of this study was to evaluate the influence of the methods of application of the direct analysis method, using the load amplification factor suggested by the KBC 2009 design code, for the evaluation of frame stability. For this purpose, the direct analysis method was performed for three-story-one-bay and five-story-three-bay unbraced steel frames with various notional loads, bending stiffness reductions, and factor B2s. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the influence of the applied methods. The scale of the frame, the axial load ratio, and the axial load distribution pattern were added to the main parameters to investigate the external effects. The research results showed that the influence of the methods of application of the direct analysis method is not significant in the case of the required axial strength and the application of the additional notional loads; and that the application of the factor B2 with the story stiffness concept to the direct analysis method is appropriate for the required flexural strength.

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.891-907
    • /
    • 2020
  • Many studies reveal that during destructive earthquakes, most of the structures enter the inelastic phase. The amount of hysteretic energy in a structure is considered as an important criterion in structure design and an important indicator for the degree of its damage or vulnerability. The hysteretic energy value wasted after the structure yields is the most important component of the energy equation that affects the structures system damage thereof. Controlling this value of energy leads to controlling the structure behavior. Here, for the first time, the hysteretic behavior and energy dissipation capacity are assessed at presence of elliptical braced resisting frames (ELBRFs), through an experimental study and numerical analysis of FEM. The ELBRFs are of lateral load systems, when located in the middle bay of the frame and connected properly to the beams and columns, in addition to improving the structural behavior, do not have the problem of architectural space in the bracing systems. The energy dissipation capacity is assessed in four frames of small single-story single-bay ELBRFs at ½ scale with different accessories, and compared with SMRF and X-bracing systems. The frames are analyzed through a nonlinear FEM and a quasi-static cyclic loading. The performance features here consist of hysteresis behavior, plasticity factor, energy dissipation, resistance and stiffness variation, shear strength and Von-Mises stress distribution. The test results indicate that the good behavior of the elliptical bracing resisting frame improves strength, stiffness, ductility and dissipated energy capacity in a significant manner.

Inelastic Seismic Response Control of the RC Framed Apartment Building Structures Using Exterior-Installed Kagome Damping System (외부접합형 카고메 감쇠시스템을 사용한 철근콘크리트 라멘조 공동주택 비탄성 지진 응답 제어)

  • Hur, Moo-Won;Chun, Young-Soo;Lee, Sang-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.58-65
    • /
    • 2016
  • Various passive energy dissipation systems have been proposed and widely applied to real building structures under seismic load due to their high energy-dissipation potential and low cost for installation and maintenance. This paper presents nonlinear dynamic analysis results of the effectiveness of exterior-installed Kagome damping system(EKDS) in passively reducing seismic response. Kagome damping system proposed by previous studies has isotropic and bi-linear hysteretic characteristics and the installation configuration is newly presented in this study. The 15 and 20 story RC framed apartment buildings are used for verifying the effectiveness of the EKDS. The stiffness ratio of the damper supporting column to the original building, the number of the dampers, and the installed stories were considered as design parameters. Numerical results demonstrated that the EKDS were very effective in reducing both the two horizontal directional seismic responses by just using smaller number of exterior-installed damping system when compared to the traditional one-directional inter-story installed damping systems.

The Response Modification Factor of Inverted V-type Braced Steel Frames (역V형 가새골조의 반응수정계수)

  • Ahn, Hyung Joon;Jin, Song Mei
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In this study of Eccentric Braced Frames have identified the following target eccentricity on the length of the inelastic behavior of the reaction by calculating the correction factor by comparing it to the value suggested by the earthquake provided material for the rational design aims to There are. As a variable-length V-braced frame analysis model stations were set up. Eccentricity faults in the model according to the length stiffness ratio, the maximum amount of energy dissipation were analyzed base shear and multi-layered model of the reaction from the eccentricity correction factor calculated on the length of the building standards proposed by KBC 2009 in response eccentricity correction factor calculated from The length varies. does not have the same response modification factor was confirmed.

Evaluation of the Second Order Analysis of Unbraced Frame by using load amplification factor (하중증폭계수를 적용한 비가새 골조 2차 해석 평가)

  • Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.627-636
    • /
    • 2009
  • The purpose of this study was to evaluate the validity of the second-order analysis using the load amplification factor suggested by design codes. For this purpose, the first-order analysis with the B1 and B2 factors suggested by KBC 2005 and the direct analysis with the load amplification factor suggested by KBC 2009 (draft) were performed for three-story -one-bay and five-story-three-bay unbraced steel frames. The results of the analyses were compared with the results of the second-order inelastic analysis to evaluate the validity of the suggested methods. The main parameters of the analysis were the scale of the frame, the axial load ratio of the column, and the methods of analysis. The research results showedthat the method suggested by KBC 2005 does not properly consider the second-order effect under the high axial load ratio, but the direct analysis method suggested by KBC 2009 (draft) properly estimates the second-order effect without any serious problem.

Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures (무량복합 및 벽식 구조시스템의 내진성능평가)

  • Kang, Hyungoo;Lee, Minhee;Kim, Jinkoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • In this paper the seismic performance of a flat plate wall system structure was evaluated based on the ATC-63 approach, and the results were compared with those of a wall slab structure having the same size. As analysis model structures, a twelve story flat plate wall structure and a wall slab structure were designed based on the KBC-2009, and their seismic performances and collapse behaviors were evaluated by nonlinear static and incremental dynamic analyses(IDA). It was observed that the flat plate wall structure was designed with smaller amount of reinforced concrete, and showed slightly larger displacement response compared with those of the wall slab structure. The collapse margin ratios of the two structures obtained from the incremental dynamic analyses satisfied the limit states specified in the ATC-63, and the structures turned out to have enough capacity to resist the design level seismic load.