• Title/Summary/Keyword: industrial wireless network

Search Result 409, Processing Time 0.024 seconds

A Design of Device Management System for Factories using Wireless Sensor Network (무선 센서 망을 이용한 공장 내 장치 관리 시스템 설계)

  • Moon, Sung-Nam;Kim, Young-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3C
    • /
    • pp.233-240
    • /
    • 2012
  • Unlike traditional factory environment, in an industrial factory network applied wireless sensor network technologies, all procedures of discovery, identification and verification of devices should be performed in an automatic fashion. To address these challenges, we design a management system using the device registry server that we propose in this paper. In the phase of device discovery, the proposed system utilizes properties of routing protocol running in factories. Also, in the phase of identification and verification, the system uses unique and general information of a device stored within the device registration server. Such a way allows management system to reduce implementation complexity and to easily manage devices in a factory applied with a wireless network consisting of heterogeneous devices.

An AP Selection Scheme for Enhancement of Multimedia Streaming in Wireless Network Environments (무선 네트워크 환경에서 멀티미디어 서비스를 위한 AP 선정 기법)

  • Ryu, Dong-Woo;Wang, Wei-Bin;Kang, Kyung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.997-1005
    • /
    • 2010
  • Recently, there has been a growing interest in the use of WLAN technology due to its easy deployment, flexibility and so on. Examples of WLAN applications range from standard internet services such as Web access to real-time services with strict latency/throughput requirements such as multimedia video and voice over IP on wireless network environments. Fair and efficient distribution of the traffic loads among APs(Access Points) has become an important issue for improved utilization of WLAN. This paper focuses on an AP selection scheme for achieving better load balance, and hence increasing network resource utilization for each user on wireless network environments. This scheme makes use of active scan patterns and the network delay as main parameters of load measurement and AP selection. This scheme attempts to estimate the AP traffic loads by observing the up/down delay and utilize the results to maximize the link resource efficiency through load balancing. We compared the proposed scheme with the original SNR(Signal to Noise Ratio)-based scheme using the NS-2(Network Simulation.2). We found that the proposed scheme improves the throughput by 12.5% and lower the network up/down link delay by 36.84% and 60.42%, respectively. All in all, the new scheme can significantly increase overall network throughput and reduce up/down delay while providing excellent quality for voice and video services.

Transmission Performance Evaluation of MPR-based Wireless Communication System Applying for Disaster Investigation (재난조사 활용을 위한 MPR기반 무선통신 전송 성능 평가)

  • Kim, Seong Sam;Shin, Dong Yoon;Noh, Hyun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.754-762
    • /
    • 2021
  • Seamless wireless communication network access technology enables users to guarantee service continuity. Hence, it is necessary for disaster situations in which network service may be interrupted. The Multi-path router is a technology to improve network stability and strengthen field operability, particularly in a disaster environment where network failure can occur by providing high-performance data transmission using multi-communication networks and network security by VPN-based wireless IP. In this paper, a prototype system for an MPR-based wireless communication network was proposed to improve the operation performance for disaster field investigation applications. A comparative experiment was performed on various data transmission performances with the existing single wireless communication network. In addition, another experiment was conducted by measuring the data packet transmission and receiving performance in the existing/new wireless communication system first and then assessing the UDP transmission performance in a single router environment to understand the transmission capability of the new MPR. The experimental results showed that the sending and receiving performance was improved by approximately double that of the existing single wireless communication system. The proposed prototype system is expected to allow users to share and disseminate collected on-site data more quickly and efficiently during a disaster site investigation.

Comparison of RF Property and Network Property for 802.11n WLAN between In-door and Out-door Environment (실내와 실외환경에서의 802.11n WLAN RF 특성 및 Network 특성 비교)

  • Kim, Gap-Young;An, Tea-Ki;Jeon, Bo-Ik;Yang, Se-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1702-1707
    • /
    • 2010
  • As quantities of the data that transmitting by the wireless are more increased, the interest and application are extending about 802.11n that uses by combination two existing 20MHz wireless LAN Channel. 802.11n use dual band of 2.4GHz band and 5.8GHz. So this is expected in mass wireless transmission method because of interference evasion effect in compliance with the radio communication of existing 2GHz neighborhood band. Like this 802.11n uses the radio as well and transmits information there is not only a possibility of undergoing an influence in radio wave environment of circumference. Specially the interior environment and outdoor environment is a possibility of saying that will be defined with each other different modeling as affects in radio communication is different. In this paper, we'll compare the influence to RF feature (802.11n) by (Indoor/Outdoor) environment difference through compared with 802.11n RF feature and Network feature in (Indoor/Outdoor) environment and also examine the correlation between RF feature and Network feature.

A Study on IEEE 802.15.4 for wireless Communication of Data in the Factory Automation System (공장자동화시스템에서 데이터 송수신의 무선화를 위한 IEEE 802.15.4에 관한 연구)

  • Lee, Hye-Rim;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.238-243
    • /
    • 2009
  • Now, the production process systems are largely based on automatic system using the wired network. The production process systems using wired network has disadvantage that it is expensive when the installed and replaced equipment. The each equipment happens to repair cost for control and management in production processes. And the replaced equipment has also the additional expense and breaks production process. These problems are solved through wireless communication between the industrial equipments. So, we propose wireless production process system based on IEEE 802.15.4 technology. It solves a complicated space and stops by replaced equipment in the factory. Then we simulated and analyzed IEEE 802.15.4 for Industrial Equipment based on Wireless Network.

  • PDF

SPSF : Smart Plant Safety Framework based on Reliable-Secure USN (차세대 USN기반의 스마트 플랜트안전 프레임워크 개발)

  • Jung, Ji-Eun;Song, Byung-Hun;Lee, Hyung-Su
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.3
    • /
    • pp.102-106
    • /
    • 2010
  • Recently process industries from oil and gas procedures and mining companies to manufactures of chemicals, foods, and beverages has been exploring the USN (Ubiquitous Sensor Networks) technology to improve safety of production processes. However, to apply the USN technology in the large-scale plant industry, reliability and security issues are not fully addressed yet, and the absence of the industrial sensor networking standard causes a compatibility problem with legacy equipment and systems. Although this situation, process industry such as energy plants are looking for the secure wireless plant solution to provide detailed, accurate safety monitoring from previously hard-reach, unaccordable area. In this paper, SPSF (Smart Plant Safety Framework based on Reliable-Secure USN) is suggested to fulfill the requirements of high-risk industrial environments for highly secure, reliable data collection and plant monitoring that is resistant to interference. The SPSF consists of three main layers: 1) Smart Safety Sensing Layer, 2) Smart Safety Network Layers, 3) Plant Network System Layer.

  • PDF

A Study on Wireless Sensor Node Control Using Embedded System (임베디드 시스템을 활용한 무선 센서노드 제어에 관한 연구)

  • Choi, Sin-Hyeong;Han, Kun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1141-1145
    • /
    • 2007
  • Rapid development of high-micro device design and wireless mobile communication technique enables each information instrument and devices to form intelligent network. The discussion of ubiquitous computing that provide information when and where desired is advanced actively. Information collected through ubiquitous sensor network assists it will be able to provide a convenient and accurate service. In this paper, we design and implement system which shows in realtime through TFT/LCD display device sensing data transmitted in embedded system instead of host pc.

  • PDF

Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN

  • Jaggi, Sukhleen;Wasson, Er. Vikas
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.259-267
    • /
    • 2016
  • In Wireless Sensor Network, various routing protocols were employed by our Research and Development community to improve the energy efficiency of a network as well as to control the traffic by considering the terms, i.e. Packet delivery rate, the average end-to-end delay, network routing load, average throughput, and total energy consumption. While maintaining network connectivity for a long-term duration, it's necessary that routing protocol must perform in an efficient way. As we discussed Optimized Link State Routing protocol between all of them, we find out that this protocol performs well in the large and dense networks, but with the decrease in network size then scalability of the network decreases. Whenever a link breakage is encountered, OLSR is not able to periodically update its routing table which may create a redundancy problem. To resolve this issue in the OLSR problem of redundancy and predict link breakage, an enhanced protocol, i.e. S-OLSR (More Scalable OLSR) protocol has been proposed. At the end, a comparison among different existing protocols, i.e. DSR, AODV, OLSR with the proposed protocol, i.e. S-OLSR is drawn by using the NS-2 simulator.

A Suitable Handoff Scheme for Time Sensitive Service in a W-ATM Network (무선 ATM 망에서 Time Sensitive Service에 적합한 Handoff 방법에 관한 연구)

  • Joo, Jong-Hyuk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.14-19
    • /
    • 2005
  • In general, cell transmission delay is more sensitive for real time video service rather than cell losses in a wireless ATM network. Existing handoff schemes, which are emphasizing the prevention of cell losses, have limitations in cell transmission delay to satisfy QoS. In this paper, we propose a scheme to minimize transmission delay generated during the handoff and to maintain the sequence of cells. Transmission delay can be reduced by transmitting ATM cells with low CLP(i.e., CLP=0) prior to others and by discarding cells with high CLP(i.e., CLP= 1). The simulation results show that the proposed scheme is suitable for delay sensitive real time VBR service as well as fast handoff by giving high CLP to less meaningful MPEG frames.

IEEE 802.15.4 Ad-Hoc Wireless Sensor Network Routing Method Applying EtherCAT Communication Method (EtherCAT 통신방식을 응용한 IEEE 802.15.4 Ad-Hoc 무선 센서 네트워크 라우팅 방식)

  • Park, Jeong-Hyeon;Seo, Chang-Jun
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.289-301
    • /
    • 2018
  • IIoT, the IoT technology applied to the industrial field, is being used as a monitoring technology for increasing in production rate and safety of workers. However, monitoring through the construction of IIoT network using Ethernet and RS485 in production lines where dozens to hundreds of machine tools are manufacturing components, have difficulties of infrastructure cost and network flexibility and fluidity. Therefore, in this paper, using IEEE 802.15.4 standard WSN device to construct a Ad-Hoc WSN in the production line. In addition, the transmission period and order of the sensor nodes are set by applying the EtherCAT communication method in which the payload frames are shared by all the sensor nodes. From this, we have overcome the problem of reliability decline and real-time issue due to the packet collision of wireless network and confirmed that it is a wireless network routing method that can be used in the actual industrial field.