• Title/Summary/Keyword: industrial wastes

Search Result 462, Processing Time 0.024 seconds

Enhancing the Intrinsic Bioremediation of PAH-Contaminated Anoxic Estuarine Sediments with Biostimulating Agents

  • Bach Quang-Dung;Kim Sang-Jin;Choi Sung-Chan;Oh Young-Sook
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.319-324
    • /
    • 2005
  • Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 ${\mu}g/kg$ dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo [a] pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 ${\mu}g$ PAH/ kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.

Deactivation and Regeneration of a Used De-NOx SCR Catalyst for Wastes Incinerator (소각로 SCR 폐탈질 촉매의 피독과 효율재생에 관한 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.259-263
    • /
    • 2008
  • The catalytic activity of the used catalyst, $V_2O_5/TiO_2$, for MSW incinerators was investigated focusing on its regeneration. As the result of the experimental analysis, the NOx removal efficiency difference between the fresh catalyst and used catalyst is about 60% at $260^{\circ}C$ and 1, 2-dichlorobenzen (1, 2-DCB) removal efficiency difference is about 14% at $200^{\circ}C$, in honeycomb test. And the catalysts, both the fresh and used, were characterized by XRD, TGA, and ICP techniques in order to investigate the deactivation. On the basis of the results, it is found that the used catalyst is deactivated by ammonium-sulfates, heavy metals (Pb, As etc.), alkali metals (Ca), and phase transfer of $TiO_2$. Also calcination treatment under nitrogen and air condition was excellent than washing and calcination treatment.

Techno-economic Evaluation of an Ethanol Production Process for Biomass Waste (바이오매스 폐기물의 에탄올 생산 공정의 기술경제성 평가)

  • Gwak, In-seop;Hwang, Jong-Ha;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.171-178
    • /
    • 2016
  • Extensive efforts from all over the world have been made to solve energy problems, such as high oil prices, global warning due to the depletion of oil. Among them, biofuel has been drawing attention as a clean energy, which can replace fossil fuels. However, conventional biofuels were often converted from eatable biomass such as sugar cane, corn and soy which should be replaced with uneatable biomass. In this study, a techno-economical evaluation of the gasification of biomass waste with mixed alcohol synthesis process was performed. Considering available domestic biomass wastes, a 2000 ton/day conversion plant were assumed to produce 533000 L/day ethanol. Also, financial data from previous studies were evaluated and used and economical sensitivities with various operation conditions were established. Economic analysis were conducted by the payback period and internal rate of return (IRR) and net present value (NPV). Sensitivity analyses of raw material costs, initial investment, the major process cost, ethanol price changes and operating costs were all performed.

The Status of Biogas as Renewable Energy (신재생에너지로서 바이오가스 현황)

  • Lim, Young-Kwan;Lee, Joung-Min;Jung, Choong-Sub
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.125-130
    • /
    • 2012
  • In these days, there has been increased focus on global warming and the exhaustion of resources recently caused by the heavy consumption of fossil resources. In order to resolve these problems, biomass is increasingly gaining international attention as a renewable energy source. Biogas derived from various biomass is environmental friendly alternative fuel for power generation, heating and vehicle fuel. Large amounts of sewage sludge, food waste and manure are generated from human activity, but these organic wastes contain high levels of organic matter and thus they are potential substrates for producing methane of biogas. The biogas contains 60% of highly concentrated methane, which is expected to be used effectively as energy. In this paper, we investigate the status of biogas in Korea as an alternative energy.

Methane Production from the Mixture of Paperboard Sludge and Sewage Sludge in an Anaerobic Treatment Process (판지슬러지와 하수슬러지를 이용한 혐기성 처리 공정에서 메탄 생산)

  • Choi, Suk Soon;Lee, Hyun Min;Jeong, Tae-Young;Yeom, Sung Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.228-231
    • /
    • 2012
  • In this work, the mixture of sewage sludge incubated in an anaerobic bioreactor for 35 days and paperboard sludge was treated in a batch anaerobic digester equipped with a ultrasonicator, and methane production during the treatment was investigated. The Soluble Chemical Oxygen Demand (SCOD) increased with increasing the amplitude of ultrasonicator, which help solubilizing paperboard sludge more effectively. The optimum amplitude of ultrasonicator for the enhancing methane productivity was found to be $142.5\;{\mu}m$ and the methane production amount increased as the anaerobic digestion period became longer. In addition, the anaerobic digestion was performed with various biomass (6000, 9000 and 12000 mg/L) and methane production increased with higher cell mass. These results will be used as valuable data to enhance the methane production from anaerobic digestion of the high concentration of organic wastes containing the paperboard sludge and sewage sludge.

Biosorption of Copper Ions by Recycling of Castanea crenata (밤나무 재활용에 의한 구리 이온의 생물흡착)

  • Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.307-311
    • /
    • 2014
  • In this present study, Castanea crenata was found as an excellent biosorbent for the removal capability of copper ions among four different wood wastes (Castanea crenata, Pinus densiflora, Larix kaemoferi and Robinia pseudoacaia). Also, the removal efficiencies of 5, 10, 20, 40 and 50 mg/L copper ions using Castanea crenata from aqueous solution were investigated. The most effective particle size of Castanea crenata for removing 5 mg/L copper ions was found to be $43{\sim}63{\mu}m$. When the concentration of Castanea crenata increased, the removal efficiencies of copper ions were enhanced. In addition, when the 0.8 g/100 mL of Castanea crenata was used for 30 min, the removal efficiencies of 20 and 40 mg/L copper ions were 99% and 85%, respectively. Moreover, the chemical treatment of Castanea crenata with 1 M sodium acetate was required to improve the removal ability for 50 mg/L copper ions. Meanwhile, 1 M hydrochloric acid was selected as the optimal desorption agent with 93% desorption efficiency of copper ions for recycling of modified Castanea crenata. Therefore, these experimental results could be employed as economical and practical engineering data for the development of copper removal processes.

A Study on the Durability of Manure Composting Facilities (축분 퇴비화 시설 내구성에 관한 조사연구)

  • Hong, Ji-Hyung
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Manure compost is a main product from animal wastes in Korea. Solid manure is usually treated by aerobic composting at manure composting facilities for land reinforcement. Agricultural use of manure compost as organic fertilizer resources, mainly manure compost, is now recommended in Korea. This study investigated the evaluation of durability about the manure composting machinery and structures which was controlled by aeration and periodic agitating. The questionnaire addressed three main topics as follows: operating practices, machinery and maintenance of the manure composting facilities are being operated. A total of the 22 manure composting facilities in an agricultural cooperative were surveyed. The results obtained in this survey were summarized as follow: The major causes of manure composting apparatus trouble were corrosion and wear, overloading and foreign matter etc. The highly trouble frequency of the agitator, packer and conveyor were chain, agitating blade and shaft, motor and screw vane, respectively. These analytical results can be used as basic information to establish the maintenance control methods and durability standard of manure composting facility.

Characterisation and Co-pyrolytic Degradation of the Sawdust and Waste Tyre Blends to Study the Effect of Temperature on the Yield of the Products

  • Shazali, Erna Rashidah Hj;Morni, Nurul Afiqah Haji;Bakar, Muhammad Saifullah Abu;Ahmed, Ashfaq;Azad, Abul K;Phusunti, Neeranuch;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2021
  • The present study aimed to determine the effect of co-pyrolysis of sawdust biomass and scrap tyre waste employing different blending ratios of sawdust to waste tyre such as 100:0, 75:25, 50:50, 25:75, and 0:100. The thermochemical characterization of feedstocks was carried out by employing the proximate, ultimate analysis, and thermogravimetric (TGA) analyses, calorific values, and scanning electron microscope coupled with energy dispersive x-ray analysis (SEM-EDX) to select the blending ratio having better bioenergy potential amongst the studied ratios. The blending ratio of 25:75 (sawdust to waste tyre) was selected for the co-pyrolysis study in a fixed-bed pyrolysis reactor system based on its solid biofuels properties such as heating value (30.18 MJ/kg), and carbon (71.81 wt%) and volatile matter (63.82 wt%) contents. The pyrolysis temperatures were varied as 500, 600 and 700 ℃ while the other parameters such as heating rate and nitrogen flowrate were maintained at 30 ℃/min and 0.5 L/min respectively. The bio-oil yields as 31.9, 47.1 and 61.2 wt%, bio-char yields as 34.5, 34.2 and 31.4 wt% and gaseous product yields as 33.6, 18.60 and 7.3 wt% at the pyrolysis temperatures of 500, 600 and 700 ℃ respectively were obtained. The blends of sawdust and waste tyres showed the improved energy characteristics which could provide the solution for the beneficial management of sawdust and scrape tyre wastes via co-pyrolysis processing.

Characteristics of Materials Recycling Product Using CPW from Households According to the Amount of r-LDPE (r-LDPE 혼입율에 따른 생활계 복합 폐플라스틱 물질재활용 제품 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Sang-Jin;Shin, Sung-Chul;Lee, Min-Hi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.425-432
    • /
    • 2021
  • In this paper, We produced supporting for ginseng cultivation facilities as a material recycling product of CPW(Complex Plastic Wastes, CPW) from households. And we analyzed the characteristics of material recycling products according to the amount of r-LDPE(Recycled low density polyethylene, r-LDPE) used. As a result, as the amount of recycled LDPE used increa sed, the tensile strength a nd elonga tion of ma teria l recycled products using CPW increa sed, but a sh decrea sed. When the recycled r-LDPE usage is 5% or more, the physical properties of the material recycling product using CPW stably satisfy the quality standard (GRM 3093-2021) of supporting for ginseng cultivation facilities.

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.