DOI QR코드

DOI QR Code

Characteristics of Materials Recycling Product Using CPW from Households According to the Amount of r-LDPE

r-LDPE 혼입율에 따른 생활계 복합 폐플라스틱 물질재활용 제품 특성

  • Kang, Suk-Pyo (Department of Architecture, Woosuk University) ;
  • Kang, Hye-Ju (Construction Test and Certification Department, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Sang-Jin (Department of Architecture, Woosuk University) ;
  • Shin, Sung-Chul (ESR Industrial Co., Ltd.) ;
  • Lee, Min-Hi (Department of Architecture, Howon University)
  • 강석표 (우석대학교 건축학과) ;
  • 강혜주 (한국건설기술연구원 건설시험인증본부) ;
  • 김상진 (우석대학교 건축학과) ;
  • 신성철 ((주)이에스알산업) ;
  • 이민희 (호원대학교 건축학과)
  • Received : 2021.09.23
  • Accepted : 2021.11.01
  • Published : 2021.12.30

Abstract

In this paper, We produced supporting for ginseng cultivation facilities as a material recycling product of CPW(Complex Plastic Wastes, CPW) from households. And we analyzed the characteristics of material recycling products according to the amount of r-LDPE(Recycled low density polyethylene, r-LDPE) used. As a result, as the amount of recycled LDPE used increa sed, the tensile strength a nd elonga tion of ma teria l recycled products using CPW increa sed, but a sh decrea sed. When the recycled r-LDPE usage is 5% or more, the physical properties of the material recycling product using CPW stably satisfy the quality standard (GRM 3093-2021) of supporting for ginseng cultivation facilities.

본 논문은 생활계 복합재질 폐플라스틱을 재활용한 물질재활용 제품의 물성을 향상시키기 위한 방안으로서 단일 재질 폐플라스틱인 r-LDPE(Recycled Low Density Polyethylene, r-LDPE) 사용량을 변화시켜 물질재활용 제품의 물성을 평가·분석하였다. 그 결과 r-LDPE 사용량이 증가할수록 생활계 복합재질 폐플라스틱 물질재활용 제품의 인장강도, 연신율은 증가하는 경향을 나타내었지만 회분은 감소하는 경향을 나타내었다. 생활계 복합재질 폐플라스틱 재생원료에 r-LDPE 사용량을 5% 이상 혼입 사용할 경우 생활계 복합재질 폐플라스틱의 물질재활용 제품인 인삼재배시설용 지주대의 품질기준인 GR M 3093-2021을 안정적으로 만족시키는 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 2019년 정부(환경부)의 재원으로 한국환경산업기술원의 지원을 받아 수행되었습니다(과제번호 2019002730012).

References

  1. Camacho, W., Karlsson, S. (2001). NIR, DSC, and FTIR as quantitative methods for compositional analysis of blends of polymers obtained from recycled mixed plastic waste, Polymer Engineering & Science, 41(9), 1626-1635. https://doi.org/10.1002/pen.10860
  2. Choi, Y., Choi, H.J., Rhee, S.W. (2018). Current status and improvements on management of plastic waste in Korea, Journal of the Korean Institute of Resources Recycling, 27(4), 3-15 [in Korean]. https://doi.org/10.7844/KIRR.2018.27.4.3
  3. Chung, S.H., Na, J.G., Kim, S.G., Woo, H.M., Kim, Y.T. (2013). Feedstock recycling technologies using waste vinyls, Journal of the Korean Institute of Resources Recycling, 22(4), 46-54. https://doi.org/10.7844/KIRR.2013.22.4.46
  4. Dhawan, R., Bisht, B.M.S., Kumar, R., Kumari, S., Dhawan, S.K. (2019). Recycling of plastic waste into tiles with reduced flammability and improved tensile strength, Process Safety and Environmental Protection, 124, 299-307. https://doi.org/10.1016/j.psep.2019.02.018
  5. Geyer, R., Jambeck, J.R., Law, K.L. (2017). Production, use, and fate of all plastics ever made, Science Advances, 3(7), 1-5.
  6. Han, J.M., Kang, B.H., Park, J.Y., Lee, J.W., Kim, N.G. (2020). The foundation performance of selected waste plastic wastes used in cement manufacturing, Resources Recycling, 29(6), 88-97. https://doi.org/10.7844/KIRR.2020.29.6.88
  7. Jang, Y.C., Lee, G., Kwon, Y., Lim, J.H., Jeong, J.H. (2020). Recycling and management practices of plastic packaging waste towards a circular economy in South Korea, Resources, Conservation and Recycling, 158, 104798. https://doi.org/10.1016/j.resconrec.2020.104798
  8. Kang, S.P., Kang, H.J., Shin, S.C., Kim, Y.S., Lee, H.S. (2020). Basic factors for quality stability of material recycling product using plastic waste from households, Journal of the Korean Recycled Construction Resources Institute, 8(4), 436-443 [in Korean]. https://doi.org/10.14190/JRCR.2020.8.4.436
  9. Keskisaari, A., Karki, T., Vuorinen, T. (2019). Mechanical properties of recycled polymer composites made from side-stream materials from different industries, Sustainability, 11(21), 6054. https://doi.org/10.3390/su11216054
  10. Kim, Y.C. (2003). An experimental study on the waste polyethylene aggregate for construction materials, Journal of the Korean Geoenvironmental Society, 4(4), 5-16.
  11. Ko, E.S., Shim, W.C., Lee, H.R., Kang, W.G., Shin, J.H., Kwon, O.C., Kim, J.N. (2018). The Current Status of Recycling Process and Problems of Recycling according to the Packaging Waste of Korea, Korean Journal of Packaging Science & Technology, 24(2), 65-71. https://doi.org/10.20909/kopast.2018.24.2.65
  12. Lee, K.H., Kim, Y.C., Kim, B.J., Lim, J.S., Jeong, J.H. (2012). Laboratory testing of material properties of asphalt binder containing wasted vinyl, International Journal of Highway Engineering, 14(5), 85-91. https://doi.org/10.7855/IJHE.2012.14.5.085
  13. Lee, S.H. (2019). Current status of plastic recycling in Korea, Journal of the Korean Institute of Resources Recycling, 28(6), 3-8 [in Korean]. https://doi.org/10.7844/kirr.2019.28.6.3
  14. Rajendran, S., Scelsi, L., Hodzic, A., Soutis, C., Al-Maadeed, M.A. (2012). Environmental impact assessment of composites containing recycled plastics, Resources, Conservation and Recycling, 60, 131-139. https://doi.org/10.1016/j.resconrec.2011.11.006
  15. Singh, N., Hui, D., Singh, R., Ahuja, I.P.S., Feo, L., Fraternali, F. (2017). Recycling of plastic solid waste: a state of art review and future applications, Composites Part B: Engineering, 115, 409-422. https://doi.org/10.1016/j.compositesb.2016.09.013
  16. Yeom, W.S., An, G.H., Liu, J.H., Jeong, J.H. (2014). Thermal characteristics of cement concrete mixed with wasted vinyl aggregates, International Journal of Highway Engineering, 16(6), 79-86. https://doi.org/10.7855/IJHE.2014.16.6.079