• Title/Summary/Keyword: industrial column

Search Result 453, Processing Time 0.024 seconds

Development of Column ion Exchange Modeling with Successive Ion Exchange Equilibrium (연속이온교환평형 칼럼 모델 개발)

  • 이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.141-145
    • /
    • 2002
  • Successive ion Exchange Column model was developed with the combination of mass action law and mole balance equation. consuming that ions entering the ion exchange bed pass the resin layer via consecutive ion exchange equilibrium. The application of the model to condensate polishing demineralizer in nuclear power plants indicates that the leakage of $Na^+$ and $Cl^-$ depends upon the degree of resin regeneration and that the ratio of specific ion concentration in Influent to in effluent is subject to the characteristics of resin and solution. The model can account for the local in-equilibrium with the correction of resin concentration and also can be applicable to a competitive ion exchange.

  • PDF

Characteristics of Cation Selectivity for Equilibrium and Column Cation Exchanges (평형 및 칼럼교환에서 양이온 선택도 특성)

  • 이석중;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.156-159
    • /
    • 2002
  • Ion exchange is the most reliable process to remove the ionic impurities and the economic operation. ion exchange is widely used in water and wastewater treatment, especially softening and demineralization. ion selectivity depends on the hydrated radius, charge of ions and concentration. The objective of this study was to determine the selectivity order of cations with equilibrium and column ion exchanges and to investigate the effect of the background anion on selectivity. Cation selectivity increases with decreasing concentration and increasing charge ( $H^+$ < $K^+$ << $Cu^{2+}$ < $Co^{2+}$ < TEX>$Ca^{2+}$ << $Ce^{3+}$)in equilibrium and column cation adsorptions.

  • PDF

Recent Trends in the Biosorption of Heavy Metals: A Review

  • Sag, Yesim;Kutsal, Tulin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.376-385
    • /
    • 2001
  • Considerable attention has been focused in recent years upon the field of biosorption for the removal of metal ions from aqeous effluents. Compared to other technologies, the advan-tages of biosortption are the high purity of the treated waste water and the cheap raw material. Really, the first major challenge for the biosorption field is to select the most promising types of biomass. Abundant biomass types either generated as a waste by-product of large-scale industrial fermentations particularly fungi or certain metal-binding seaweeds have gained importance in re-cent years due to their natural occurrence, low cost and, of course good performance in metal biosorption. Industrial solutions commonly contain multimetal systems or several organic and in organic substances that form complexes with metals at relatively high stability forming a very complex environment. When several components are present, interference and competition phe-nomena for sorption sites occur and lead to a more complex mathematical formulation of the process. The most optimal configuration for continuous flow-biosorption seems to the packed-bed column which gets gradually from the feed to the solution exit end. Owing to the com-petitive ion exchange taking place in the column, one or more of the metals present even at trace levels may overshot the acceptable limit in the column effluent before the breakthrough point of the trargeted metal. Occurrence of 'overshoot's and impact on havey metal removal has not been analyzed enough. New trends in biosorption are discussed in this review.

  • PDF

Nonlinear finite element analysis of loading transferred from column to socket base

  • Anil, Ozgur;Uyaroglu, Burak
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.475-492
    • /
    • 2013
  • Since the beginning of the 90 s, depending on the growth of the industrial sector in Turkey, factory constructions have been increased. The cost of precast concrete buildings is lower than the steel ones for this reason the precast structural systems are used more. Precast concrete structural elements are mostly as strong as not to have damage in the earthquake but weakness of connections between elements causes unexpected damages of structure during earthquake. When looking at the previous researches, it can be seen that there is a lack of studies about socket type base connections although there were many experimental and analytical studies about the connections of precast structural elements. The aim of this study is to investigate the stress transfer mechanism between column and the socket base wall with finite element method. For the finite element analysis ANSYS software was used. A finite element model was created which is the simulation of experimental research executed by Canha et al. (2009) under vertical and horizontal forces. Results of experimental research and finite element analysis were compared to create a successful simulation of experimental program. After determining the acceptable parameters, models of socket bases were created. Model dimensions were chosen according to square section column sizes 400, 450, 500, 550 and 600 mm which were mostly used in industrial buildings. As a result of this study, stress distribution at center section of the socket base models were observed and it is found that stress distribution affects triangular at the half of socket bottom and top.

Behavior of Hybrid Double Skin Concrete Filled Circular Steel Tube Columns

  • Kim, Jin-Kook;Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.191-204
    • /
    • 2013
  • A hybrid double skin concrete filled (HDSCF) circular steel tube column is proposed in this study. The yield strength of the outer steel tube is larger than 690MPa and the inner tube has less strength. In order to achieve efficiency with the high strength outer tube, a feasibility study on reducing the thickness of the tube below the specified design codes for CFTs was conducted based on an experimental approach. The experiment also took variables such as thickness of the inner tube, hollow ratio, and strength of concrete into consideration to investigate the behavior of the HDSCF column. In order to estimate the applicability of design equations for CFTs to the HDSCF column, test results from CFT and HDSCF columns with design codes were compared. It was found that the axial compressive performance of the proposed HDSCF column is equivalent to that of the conventional CFT member irrespective of design variables. Furthermore, the design equation for a circular CFT given by EC4 is applicable to estimate the ultimate strength of the HDSCF circular steel tube column.

Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization

  • Nguyen, Anh P.;Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.635-645
    • /
    • 2018
  • Beam-column joints play a significant role in static and dynamic performances of reinforced concrete frame structures. This study contributes a numerical approach of topologically optimal design of carbon fiber reinforced plastics (CFRP) to retrofit existing beam-column connections with crack patterns. In recent, CFRP is used commonly in the rehabilitation and strengthening of concrete members due to the remarkable properties, such as lightweight, anti-corrosion and simplicity to execute construction. With the target to provide an optimal CFRP configuration to effectively retrofit the beam-column connection under semi-failure situation such as given cracks, extended finite element method (X-FEM) is used by combining with multi-material topology optimization (MTO) as a mechanical description approach for strong discontinuity state to mechanically model cracked structures. The well founded mathematical formulation of topology optimization problem for cracked structures by using multiple materials is described in detail in this study. In addition, moved and regularized Heaviside functions (MRHF), that have the role of a filter in multiple materials case, is also considered. The numerical example results illustrated in two cases of beam-column joints with stationary cracks verify the validity, benefit and supremacy of the proposed method.

An Optimization of Ship Building Mix under N Different Docks (N개의 다른 도크를 고려한 선박 건조 혼합의 최적화)

  • Kim, Yearn-Min
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • This paper deals with two most important problems, from both practical and theoretical standpoints, arising when building the ships in N different docks. Such docks have become core components of modern ship construction. One problem is to minimize the number of building docks in the shipyard, while the other is to keep the usage rate of resources fed into docks as constant as possible. In this paper the combined problem is formulated as a single-integer programming model. The LP-relaxation of this model is solved by column-generation techniques. Practical applications of this formulation are also discussed.

Routing and Wavelength Assignment in Survivable WDM Networks (생존도를 고려한 WDM 망의 경로설정 및 파장할당)

  • Lee, Taehan;Park, Sungsoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.124-127
    • /
    • 2001
  • We consider the routing and wavelength assignment problem in survivable WDM transport network without wavelength conversion. We assume the single-link failure and a path protection scheme in optical layer. When a physical network and a set of working paths are given, the problem is to select a link-disjoint protection path for each working path and assign a wavelength for each working and protection path. We give an integer programming formulation of the problem and propose an algorithm to solve it based on column generation technique and variable fixing. We devise a branch-and-price algorithm to solve the column generation problem. We test the proposed algorithm on some randomly generated data and test results show that the algorithm gives very good solutions.

  • PDF

Signomial Classification Method with 0-regularization (L0-정규화를 이용한 Signomial 분류 기법)

  • Lee, Kyung-Sik
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.151-155
    • /
    • 2011
  • In this study, we propose a signomial classification method with 0-regularization (0-)which seeks a sparse signomial function by solving a mixed-integer program to minimize the weighted sum of the 0-norm of the coefficient vector of the resulting function and the $L_1$-norm of loss caused by the function. $SC_0$ gives an explicit description of the resulting function with a small number of terms in the original input space, which can be used for prediction purposes as well as interpretation purposes. We present a practical implementation of $SC_0$ based on the mixed-integer programming and the column generation procedure previously proposed for the signomial classification method with $SL_1$-regularization. Computational study shows that $SC_0$ gives competitive performance compared to other widely used learning methods for classification.

An Integer Programming Approach to the PCB Grouping Problem

  • Yu Sungyeol;Kim Duksung;Park Sungsoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.394-401
    • /
    • 2003
  • We consider a PCB grouping problem arising from the electronic industry. Given a surface mounting device, several types of PCBs and a number of component feeders used to assemble the PCBs. the optimization problem is the PCB grouping problem while minimizing setup time of component feeders. We formulate the problem as an Integer programming model and propose a column generation approach to solve the Integer programming formulation. In this approach we decompose the original problem Into master problem and column generation subproblem Starting with a few columns in the master problem. we generate new columns successively by solving subproblem optimally. To solve the subproblem. we use a branrh-and-rut approach. Computational experiments show that our solution approach gives high quality solutions in a reasonable computing time.

  • PDF