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Abstract
We consider the routing and wavelength
assignment problem in survivable WDM transport

network without wavelength conversion. We
assume the single-link failure and a path
protection scheme in optical layer., When a

physical network and a set of working paths are
given, the problem is to select a link-disjoint
protection path for each working path and assign
a wavelength for each working and protection
path. We give an integer programming
formulation of the problem and propose an
algorithm to solve it based on column generation
technique and variable fixing. We devise a
branch-and-price algorithm to solve the column
generation problem. We test the proposed
algorithm on some randomly generated data and
test results show that the algorithm gives very
good solutions.

1. Introduction

Survivability has been an important issue in
designing the fiber-optic based telecommunication
network. In WDM network, several lightpaths
pass a link and the failure of a network
component such as a fiber link can lead to the
failure of all those lightpaths. Because each
lightpath is expected to operate at a rate of
several Gbps, such a failure can lead to a severe
disruption in the network’s traffic. Optical layer
protection schemes in WDM network can be
classified in much the same manner as
SONET/SDH protection schemes. Refer [2] and
[5] for detailed characteristics and comparisons of
those schemes.

Many studies on the design problems in
WDM network, which is mainly in terms of
determining routing and wavelength assignment
to each optical channel, has been performed [3,6,7]
but the problem in survivable network has not
been studied intensively. Recently, studies on
survivable WDM network are performed [4,89,
10,11,12]. All the studies assume a failure
scenario and a protection scheme, respectively.
They determine the working and(or) protection
paths against the assumed network failure.

In this paper, we consider the routing and
wavelength assignment problem in survivable
WDM transport network without wavelength
conversion. We assume the single-link failure
scenario and a path protection scheme in optical
layer. When a failure occurs, the event is quickly
disseminated to all the pertinent nodes, which set

up the backup paths for the failed lightpaths and
switch data to them. The scheme is being
implemented in novel OXC (Optical
Cross—-Connect) which has the capability to
change the routing patterns at a node [13]. Due
to time constraints, the scheme is typically based
on predetermined backup paths.

In wavelength assignment for protection
paths, there are two possible methods [10,11]. One
method assigns the same wavelength to the
protection paths as its corresponding working
path (Method-1). The other method assigns an
arbitrary wavelength for each protection path
(Method-2). In this paper, we assume method-1.

2. Problem Formulation

As mentioned in the previous section, we
consider the routing and wavelength assignment
problem in survivable WDM network. We assume
the single-link failure and the following path
protection scheme. When a working path is
established, a protection path for the working
path is also determined and the protection path is
activated when the working path fails. The
predetermined protection path for each working
path is independent to the location of the failure.
In other words, a working path and the
corresponding protection path are link-disjoint.

When a physical network and a set of
working paths are given, we must select a
link~disjoint protection path for each working
path and assign a wavelength for working and
protection paths. In wavelength assignment, a
working path and corresponding protection path
must be assigned the same wavelength. We will
call this problem survivable routing and
wavelength assignment (SRWA) problem. We
assume that no wavelength conversion is
permitted. Thus, wavelength reuse is very
important for the efficiency and the objective is
to minimize the number of the used wavelengths
to maximize the wavelength reuse.

First, we introduce some notation.
G=(V,E) : physical network
P : set of given working paths
opd, * two end nodes of working path pEP
R(p) : set of all possible protection paths for

working path pEP

R=U pE pR ( p )
E(p) : set of links used by path p

Let’'s define a routing configuration as a set
of paths in P and R. We call routing
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configuration c as identical survivable
independent routing configuration (ISIRC) if all
the paths in ¢ can be established using one
wavelength and it has following characterisics. If
working path p is contained to an ISIRC, then a
corresponding protection path rER(p) must be
contained to it because they use the same
wavelength. A ’‘closed trail’ on a graph is a
closed walk that traverses each link at most
once. Because p and r are link-disjoint, those
two paths form a closed trail. In other words, an
ISIRC consists of several closed trails and each
closed trail is divided into a working path and a
corresponding protection path. Note that no two
protection paths in an ISIRC are activated at the
same time because the corresponding working
paths must be in the ISIRC and they don’t share
any link. Thus, if a link is used by a working
path, then the link can not be used by any other
working or protection path. Otherwise, the link
can be used by several protection paths. We
introduce some more notation.
H(p) : set of all possible closed trails on G
which contain working path pEP
H=U pe pH ( p)
E(h) : set of links used by closed trail heH
C; : set of all ISIRC's.

Note that a closed trail in H{(p) is consist of
working path p and a protection path r&ER(p).
In other words, E(R)=E(p)UE(r). Then, an
ISIRC can be represented by a binary vector
a.€B"™. The p™ element of a, , denoted as
ap is 1 if a closed trail in H(p) is contained in
c, otherwise, a,=0 .

Then, we can formulate SRWA as the
following integer program.

(MP) min §c2‘
s.t. C;cla,,czczl,for all pepP (1)

z,£{0,1} for all ceC,

Each decision variable ceC; if
ISIRC ¢ is established, otherwise, =z.=0.
Constraints (1) ensure that at least one closed
trail for each working path must be selected. It
also means that all given working paths and a
protection path for each working path should be
established. @We can easily obtained the
wavelength assignment by assigning the same
wavelength to paths contained in an ISIRC.
Then, each working and corresponding protection
path use the same wavelength.

Let MLP be the LP relaxation of MP. MLP
has exponentially many variables. However, we
can solve MLP by using the column generation
technique [1]. First, we assume that a subset
C’; of C; is given. Then we construct a

restricted LP relaxation RMLP by replacing C;

2,71,

by €’ in MLP. Let a, be the dual variable
corresponding to the p™ constraint in (1). We
can solve RMLP by the simplex method and let
2" be an optimal solution to RMLP and a° be
the values of the dual variables returned by the

simplex method in RMLP. Then, z* is an optimal
solution to MLP if the following condition is
satisfied because the reduced cost of all variables
are nonnegative [1].

2 aa,.<1 for all cEC\C; (2)

PEP
Note that SP is the problem to find a
maximum weight identical survivable independent
routing configuration, where closed trail A€ H(p)

has weight a;. .

3. Algorithm for Column Generation Problem
As noted in the previous section, column

generation problem is find a maximum weight

SIRC. Then, it can be formulated as follows.

(SP)

*
a
max p;}’ rég(p) PXh

piit & ewn= (17910,

for allpEPande=E (3)
2, h;}:(p)d‘;hxh—yeso, for all e€E (4)

xp¥.E1{0,1} for all h€H and e€E
A closed trail is consist of a working path
and a corresponding protection path. The

coefficient d',,=1 if the protection path in closed
trail h pass link e, otherwise d,,=0 . Similarly,
d?,=1
pass link e, otherwise d%,=0. Fach decision
heHd if closed traill h is

otherwise,

if the working path in closed trail A

variable x,=1,

selected, x,=0 . Decision variable

¥.=1, e€FE if link e is used by a working

path, otherwise, y.=0. Constraints (3) ensure

that link e may be used by multiple protection
paths if the link is not used by any working
path. Constraints (4) ensure that at most one
working path can pass on a link. Thus, (3) and
(4) satisfy the restriction for an ISIRC and

feasible solution to SP is an ISIRC.
The number of wvariables x; in SP is

exponentially many. But, we can solve the LP

relaxation of SP by column generation technique.

3.1 Column generation for SP

Let SLP be the LP relaxation of SP and let
SLP’ be a restricted LP relaxation obtained by
replacing H’(p)CH(p) for all pEP. Let B,
for all pEP and e€E and p,. , for all eEE, be

the nonnegative dual variables associated with
constraints (3) and (4), respectively. We can solve
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SL¥’ by the simplex method and let (x*,y") be
the obtained optimal solution to SLP’ and let be

(.5,—5) be the corresponding optimal dual
solution. Then, the reduced cost of each closed
trail hEH{(p), denoted c, , is as follows.

= Q * - - ry
Ch p eEZE(r) Bpe EEZE:(p) Pe

Note that a, and > p, are determined
eEE(p)

values for a working path p because E(p) is
known. Thus, we only find a protection path
which has maximum weight where link e has
weight -3—,,2 Then, the column generation
problem is to find a shortest path between o,
and d, on a given network G=(V,E\E(p))

with the link weight B, . Because the link
weights are nonnegative, we can solve the
problem in polynomial time.

3.2 Branch-and-price procedure for SP

After solving SLP, we perform branch-and-
price procedure to get an optimal solution to SP.
In the branch-and-price procedure, a branching
rule is required such that the column generation
is possible after branching.

Now, we present our branching rule. When

optimal solution (x*,y") to SLP’ is obtained,
denote U(x',y")SP as the set of links such that
corresponding y~ has fractional value. If
|U(x",y")I>0, we branch on vy, such that

e’=arg max ey, Ve - We make two new

branches, one of them forces y, to be 1, the
other forces y . to be 0. In those branches, the
column generation problem is not changed.

If |U("y)I=0, it is determined whether
each link is used by any working path or not.

Then, we define P(x"y“e)CP for all e€E
such that working path pEP(x"y%e) if and
only if there exists a closed trail AE€H(p) with
x>0 such that e€E(p). Clearly, if (x",y") is
an integral solution, then {U(x"y%I=0 and

IP(x*,y%e)l<1l. Converse is not always true.
However, we can derive the following positive
result if we use the simplex method. We omit the
proof of them because the length of the paper.
Proposition 1. Suppose an optimal solution
(x*,y") to SLP' is obtained by the simplex
method. When [U(x",y")I=0 and |P(x"y"e)l
<1 for all e€E then (x",y") is integral.

For a given solution (x",y") such that
[U(x*,y*N=0 , we get P(x",y%e) for all eE.
Then, we choose e” with the lowest index such
thate” = arg max ,cglP(x",y%e)l . If |P(x",y%e")l

=1 , we get an integral solution by proposition 1.
we divide P(x",y%e’) into two
disjoint sets P;(x",y"e")
such that Pix"y5e)={p"} and
Py(x",y5e")=P(x",y" e \P(x",y"e”)
with the lowest

Otherwise,
and Py(x",y%e’),

where
P = arg MaxX pep(xyie) hE%(p)x;'
index. Then we make two branches in the branch
and bound tree such that any closed trail for

PEP(x",y"e") can not be selected in the first

node and any closed trail for pEP;(x",y%e")
can not be selected in the second node.
In the first node, we require x,=0, for all

h€H(p) such that pEP(x",y"e"). Moreover,

for each pEP,x",y"e"), we need not to
generate column in the first node. For the second
node, we apply the same scheme. Thus, the
column generation is still possible in the branch.

4. Overview of the algorithm for SRWA

In this section, we present the overall
algorithm to solve MP. As mentioned before,
MLP has exponentially many variables. However,
we can solve MLP efficiently by using the
column generation technique. In the previous
section, we explained the algorithm to solve the
column generation problem SP. After solving
MLP, if the obtained optimal solution to MLP is
not integral, we perform a variable fixing
procedure to get an integral solution to SRWA.

First, we select a variable which has
maximum value among the variables having
fractional value in the last RMLP and then fixed
the value of the variable to 1. After fixing, we
solve RMLP and we perform the column
generation procedure until no more column is
generated. If the obtained solution is integral then
we have found an integral solution to SRWA.
Otherwise, we select another variable which has
fractional value and fixed it to 1 and then
generate columns again. We repeat above steps
until we get an integral solution. The procedure
does not guarantee to find an optimal solution to
SRWA. But the last RMLP may contain many
columns that are part of the optimal solution
because the most profitable columns are generated
and we generate more columns in the variable
fixing procedure. Thus, we can expect to find a
good solution. We can check the quality of our
solution by comparing it with the lower bound
obtained from the optimal value of MLP.
Computational results in the next section show
that our solution is very good.

5. Computational Result

We tested our algorithm on the NSFNET
shown in figure 1. For the test, we randomly
generated 1 or 2 working paths for all pairs of
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two nodes with the same probability. We use the
shortest path routing for working path. We tested
20 randomly generated problem instances. The
tests were run on a pentium PC(700MHz) and we
used CPLEX callable library as an LP solver.

Figure 1. National Science Foundation Network

Test results are summarized in Table 1. In
the table, the heading ‘coll’ and ’‘col2’ refer to
the number of generated columns until MLP is
solved to optimality and the number of
generated columns in the wvariable fixing
procedure after solving MLP, respectively. The
heading ’fix’ refers to the number of fixed
variables in the variable fixing procedure. Zup
refers to the value obtained by rounding up the
optimal objective value of MLP which provides a
lower bound on the optimal objective value of
SRWA. Z refers to the objective value obtained
by our algorithm. Dif is defined as Dif = Z -
Zmip and it gives an upper bound on the
difference between the optimal solution value and
obtained solution value. The time to solve the
problem is reported under the heading of Time.

Test results show that our algorithm gives
optimal solutions for all test problem instances
and MLP gives a very tight lower bound on the
optimal objective value of SRWA.

Table 1. Computational Results

coll col2 fix Zyp Z Dif Time(sec)
1197 59 8 28 28 0 32302
2 1250 53 11 25 25 0 260632
3 |172 65 13 27 27 0 132804
4 (270 8 4 23 23 0 213121
51189 70 6 29 29 0 161634
6 (233 68 12 25 25 0 99915
71218 &8 3 29 29 0 148964
8 |18 69 8 25 25 0 77352
9 1146 44 7 26 26 0 941.47
101196 106 15 21 21 0 1731.36
11 |144 3 2 25 25 0 72572
12346 51 9 29 29 0 306127
13 118 67 5 24 24 0 148541
14 1186 128 14 24 24 0 1790.79
151222 53 4 25 25 0 143570
16 {238 4 1 28 28 0 133787
17193 15 2 29 29 0 24173
1841499 17 3 24 24 0 8804
191218 20 1 23 23 0 91418
201116 74 10 26 26 0 896.66

6. Conclusions
In this paper, we consider the routing and
wavelength assignment problem on survivable

WDM network under the single-link failure. We
proposed an integer programming formulation and
an algorithm based on column generation and
variable fixing. We tested our algorithm on
randomly generated data and test results showed
that our algorithm provided very good solutions.

In this paper, we considered a path protection
scheme. Considering other protection schemes
could be good research works. We assumed that
working paths are given, but the problem which
decide the routing of working and protection
paths together may be worth consideration.
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