• 제목/요약/키워드: inductive feedback

검색결과 35건 처리시간 0.027초

A 90-nm CMOS 144 GHz Injection Locked Frequency Divider with Inductive Feedback

  • Seo, Hyo-Gi;Seo, Seung-Woo;Yun, Jong-Won;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권3호
    • /
    • pp.190-197
    • /
    • 2011
  • This paper presents a 144 GHz divide-by-2 injection locked frequency divider (ILFD) with inductive feedback developed in a commercial 90-nm Si RFCMOS technology. It was demonstrated that division-by-2 operation is achieved with input power down to -12 dBm, with measured locking range of 0.96 GHz (144.18 - 145.14 GHz) at input power of -3 dBm. To the authors' best knowledge, this is the highest operation frequency for ILFD based on a 90-nm CMOS technology. From supply voltage of 1.8 V, the circuit draws 5.7 mA including both core and buffer. The fabricated chip occupies 0.54 mm ${\times}$ 0.69 mm including the DC and RF pads.

유도형 변위 센서의 동적 특성 향상을 위한 이론적 고찰 (A Theoretical Investigation for Improving Dynamic Characteristics of Inductive position sensor)

  • 신우철;홍준희;이동주
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.149-154
    • /
    • 2002
  • In a high speed spindle system, it is very important to monitor the state of rotating rotor. Particularly in active control spindle system, the position sensor must provide feedback to the control system on the exact position of the rotor. In order to monitor the state of a high speed spindle exactly, high accuracy and wide frequency bandwidth of sensors are important. This paper observes the factors which has an effect on dynamic performances of inductive position sensor.

  • PDF

A Feedback Wideband CMOS LNA Employing Active Inductor-Based Bandwidth Extension Technique

  • Choi, Jaeyoung;Kim, Sanggil;Im, Donggu
    • 스마트미디어저널
    • /
    • 제4권2호
    • /
    • pp.55-61
    • /
    • 2015
  • A bandwidth-enhanced ultra-wide band (UWB) CMOS balun-LNA is implemented as a part of a software defined radio (SDR) receiver which supports multi-band and multi-standard. The proposed balun-LNA is composed of a single-to-differential converter, a differential-to-single voltage summer with inductive shunt peaking, a negative feedback network, and a differential output buffer with composite common-drain (CD) and common-source (CS) amplifiers. By feeding the single-ended output of the voltage summer to the input of the LNA through a feedback network, a wideband balun-LNA exploiting negative feedback is implemented. By adopting a source follower-based inductive shunt peaking, the proposed balun-LNA achieves a wider gain bandwidth. Two LNA design examples are presented to demonstrate the usefulness of the proposed approach. The LNA I adopts the CS amplifier with a common gate common source (CGCS) balun load as the S-to-D converter for high gain and low noise figure (NF) and the LNA II uses the differential amplifier with the ac-grounded second input terminal as the S-to-D converter for high second-order input-referred intercept point (IIP2). The 3 dB gain bandwidth of the proposed balun-LNA (LNA I) is above 5 GHz and the NF is below 4 dB from 100 MHz to 5 GHz. An average power gain of 18 dB and an IIP3 of -8 ~ -2 dBm are obtained. In simulation, IIP2 of the LNA II is at least 5 dB higher than that of the LNA I with same power consumption.

셀프센싱 자기 부상계를 위한 인덕턴스형 변위센서 (An Inductive Position Sensor for Self-sensing Magnetic Suspension System)

  • 윤형진;이상헌;백윤수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1038-1041
    • /
    • 2003
  • The magnetic suspension system is used in many areas, because it has great advantages. such as no friction, no noise, no lubrication and so on, but it is a unstable system in natural. It must have a feedback control with the position is measured for a stable levitation. There are an eddy-current sensor, a capacitive sensor, an inductive sensor, and an optical sensor with a laser as the sensor which measures displacements without contact. Among them, an inductive sensor is made with lower price than others. And it has a good linearity. In this paper, a magnetic circuit leads a linear equation between an input as a displacement and an output as a voltage. Experiments establish that voltage change according to displacement is linear. This paper presents the preliminary study of an inductive position sensing for self-sensing magnetic suspension system.

  • PDF

Inductive Shunt 피드백을 이용한 고선형성 광대역 저잡음 증폭기 (Highly Linear Wideband LNA Design Using Inductive Shunt Feedback)

  • 정남휘;조춘식
    • 한국전자파학회논문지
    • /
    • 제24권11호
    • /
    • pp.1055-1063
    • /
    • 2013
  • 저 잡음 증폭기는 RF 수신단의 필수적인 요소이며, 다양한 무선시스템에서 사용하기 위하여 넓은 주파수 범위에서 동작하도록 요구된다. 전압 이득, 반사 손실, 잡음 지수, 선형성과 같은 중요한 성능지표들을 신중히 다루어서, 제안하는 LNA의 주요한 성능으로 역할을 하게끔 한다. Buffer 단에서 peaking 인덕터를 사용하며 전체적으로 cascade 구조로써 inductive shunt feedback을 LNA 입력 단에 성공적으로 적용하였다. 광대역 정합 주파수를 얻기 위한 설계식은 상대적으로 간단한 회로구성을 통해 도출된다. 입력 임피던스의 주파수 응답 분석을 위하여 pole과 zero를 광대역 응답을 실현하기 위한 특성으로 기술하였다. 입력 단에 게이트와 드레인 사이의 인덕터는 출력의 3차 고조파를 감소시킴으로 선형성을 크게 향상시킬 수 있다. 제안하는 회로를 $0.18{\mu}m$의 CMOS 공정으로 제작하였고, Pad를 포함한 광대역 LNA의 칩 면적은 $0.202mm^2$이다. 측정 결과는 1.5~13 GHz에서 입력손실은 -7 dB 이하이고, 전압 이득은 8 dB 이상이며, 잡음 지수는 6~9 dB 정도이다. 그리고 IIP3는 8 GHz에서 2.5 dBm이며, 1.8 V 전압에서 14 mA 전류를 소모한다.

고속 주축 상태 모니터링용 유도형 변위 센서의 특성 평가 (Characteristics Evaluation of Inductive Position Sensor for the State monitoring of a High Speed Spindle)

  • 신우철;홍준희;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.65-68
    • /
    • 2002
  • In a high speed spindle system, it is very important to monitor the state of rotating rotor. Particularly in active control spindle system, the position sensor must provide feedback to the control system on the exact position of the rotor. In order to monitor the state of a high speed spindle exactly, High accuracy and wide frequency bandwidth of sensors are important. This paper describes the factors which has an effect on performances of inductive position sensor. We also report the experimental results that characterize the performances of the inductive position sensor.

  • PDF

Static VAR Compensator-Based Voltage Regulation for Variable-Speed Prime Mover Coupled Single- Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Noro, Osamu;Sato, Shinji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권3호
    • /
    • pp.185-196
    • /
    • 2003
  • In this paper, the single-phase static VAR compensator (SVC) is applied to regulate and stabilize the generated terminal voltage of the single-phase self-excited induction generator (single-phase SEIG) driven by a variable-speed prime mover (VSPM) under the conditions of the independent inductive load variations and the prime mover speed changes The conventional fixed gain PI controller-based feedback control scheme is employed to adjust the equivalent capacitance of the single-phase SVC composed of the fixed excitation capacitor FC in parallel with the thyristor switched capacitor TSC and the thyristor controlled reactor TCR The feedback closed-loop terminal voltage responses in the single-phase SEIG coupled by a VSPM with different inductive passive load disturbances using the single-phase SVC with the PI controller are considered and discussed herem. A VSPM coupled the single-phase SEIG prototype setup is established. Its experimental results are illustrated as compared with its simulation ones and give good agreements with the digital simulation results for the single-phase SEIG driven by a VSPM, which is based on the SVC voltage regulation feedback control scheme.

Highly Linear Wideband LNA Design Using Inductive Shunt Feedback

  • Jeong, Nam Hwi;Cho, Choon Sik;Min, Seungwook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권1호
    • /
    • pp.100-108
    • /
    • 2014
  • Low noise amplifier (LNA) is an integral component of RF receiver and frequently required to operate at wide frequency bands for various wireless system applications. For wideband operation, important performance metrics such as voltage gain, return loss, noise figure and linearity have been carefully investigated and characterized for the proposed LNA. An inductive shunt feedback configuration is successfully employed in the input stage of the proposed LNA which incorporates cascaded networks with a peaking inductor in the buffer stage. Design equations for obtaining low and high impedance-matching frequencies are easily derived, leading to a relatively simple method for circuit implementation. Careful theoretical analysis explains that input impedance can be described in the form of second-order frequency response, where poles and zeros are characterized and utilized for realizing the wideband response. Linearity is significantly improved because the inductor located between the gate and the drain decreases the third-order harmonics at the output. Fabricated in $0.18{\mu}m$ CMOS process, the chip area of this wideband LNA is $0.202mm^2$, including pads. Measurement results illustrate that the input return loss shows less than -7 dB, voltage gain greater than 8 dB, and a little high noise figure around 6-8 dB over 1.5 - 13 GHz. In addition, good linearity (IIP3) of 2.5 dBm is achieved at 8 GHz and 14 mA of current is consumed from a 1.8 V supply.

Feedback을 가진 P.V.M.방식 Chopper 회로에 관한 연구 (A Study on Pulse Frequency Modulated Chopper with Feedback)

  • 박민호;전희종
    • 전기의세계
    • /
    • 제26권3호
    • /
    • pp.63-68
    • /
    • 1977
  • In this paper, the theory of pulse frequency modulated DC/DC power converter to obtain constant output voltage for all input voltage changes is discussed. The switch controller consisting of integrator and comparator determines the ON time of power switch-Thyristor-by the error between the load voltage and a load reference voltage. Resulting voltage and current waveforms have been studied theoretically in detail and verified experimentally for a resistive and inductive load condition. State equations for voltages and currents using binary logic variables are computed by digital computer. Comparison of these withe oscillograms obtained from an experimental model shows very close agreement.

  • PDF

High-speed CMOS Frequency Divider with Inductive Peaking Technique

  • Park, Jung-Woong;Ahn, Se-Hyuk;Jeong, Hye-Im;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권6호
    • /
    • pp.309-314
    • /
    • 2014
  • This work proposes an integrated high frequency divider with an inductive peaking technique implemented in a current mode logic (CML) frequency divider. The proposed divider is composed with a master-slave flip-flop, and the master-slave flip-flop acts as a latch and read circuits which have the differential pair and cross-coupled n-MOSFETs. The cascode bias is applied in an inductive peaking circuit as a current source and the cascode bias is used for its high current driving capability and stable frequency response. The proposed divider is designed with $0.18-{\mu}m$ CMOS process, and the simulation used to evaluate the divider is performed with phase-locked loop (PLL) circuit as a feedback circuit. A divide-by-two operation is properly performed at a high frequency of 20 GHz. In the output frequency spectrum of the PLL, a peak frequency of 2 GHz is obtained witha divide-by-eight circuit at an input frequency of 250 MHz. The reference spur is obtained at -64 dBc and the power consumption is 13 mW.