• Title/Summary/Keyword: inductance ratio

Search Result 128, Processing Time 0.025 seconds

High Step-Up Converter with Hybrid Structure Based on One Switch

  • Hwu, K.I.;Peng, T.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1566-1577
    • /
    • 2015
  • A novel high step-up converter is presented herein, which combines the conventional buck-boost converter, the charge pump capacitor and the coupling inductor. By doing so, a quite high voltage conversion ratio due to not only the turns ratio but also the duty cycle, so as to increase design feasibility. It is noted that the denominator of the voltage conversion ratio is the square of one minus duty cycle. Above all, there is no voltage spike across the switch due to the leakage inductance and hence no passive or active snubber is needed, and furthermore, the used switch is driven without isolation and hence the gate driving circuit is relatively simple, thereby upgrading the industrial application capability of this converter. In this paper, the basic operating principles and the associated mathematical deductions are firstly described in detail, and finally some experimental results are provided to demonstrate the effectiveness of the proposed high step-up converter.

A Study on the Inverter Type Neon Power Supply Using a Piezoelectric Transformer (압전 변압기를 이용한 인버터식 네온관용 변압기에 관한 연구)

  • 변재영;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.504-511
    • /
    • 2003
  • In this paper, inverter type neon power supply using a piezoelectric transformer is fabricated and its characteristic is investigated. Developed neon power supply is composed of basic circuit and blocks, such as rectifier part, frequency oscillation part and piezoelectric transformer and resonant half bridge inverters. In this paper for complement the low power limitation, piezoelectric transformer at parallel connected driving by inverter is studied for noon tubes system of high power. When piezoelectric transformer is connected with parallel, LC filter connection method with parallel and selection of inductance L and capacitor C of primary side is suggested for reduce unbalanced current at the terminal of each transformer. Piezoelectric transformers use piezoelectric ceramic devices. Thus it is wireless therefore it has high power density, high Isolation level, low loss, more light, and miniaturization. In addition, high voltage transfer ratio is expected because there is no leakage inductance. Also, it has economic merit that the electrical loss Is low because structure is simple, small and tighter weight.

Analytic Design of a Ferroresonant Transformer for Microwave Heating System (초고주파 가열장치에 사용하는 철공진 변압기의 해석적 설계)

  • 나정웅;김원수
    • 전기의세계
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 1979
  • In the microwave heating system, a ferroresonant transformer is used to regulate the magnetron power fluctuation. For the simplification, nonlinear characteristics of the transformer and the magnetron are idealized to be piecewise linear. Dipped peak shape of the magnetron current is explained qualitatively by considering the fundamental and third harmonic frequency components in the circuit. Design equations providing the values of the leakage inductance, turn ratio of the transformer and the capacitance are derived analytically by cosnidering the fundamental frequency component only. The ferroresonant transformer is designed to obtain a required regulation and high input power factor from the derived design equations, and analytical calculations are compared with experimental measurements.

  • PDF

Input Impedance and Current Feedforward Control of Single-Phase Boost PFC Converters

  • Park, Sungmin;Park, Sung-Yeul;Bazzi, Ali M.
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.577-586
    • /
    • 2015
  • The combination of voltage feedforward and feedback control is a conventional approach for correcting the power factor in single-phase ac-dc boost converters. The feedback duty ratio increases significantly with an increase of the line frequency and input inductance. Therefore, the performance of the conventional approach is highly dependent on the bandwidth of the feedback controller. As a result, the input power quality can be significantly exacerbated due to uncompensated duty ratios if the feedback controller is limited. This paper proposes an input impedance and current feedforward control method to reduce the control portion of the feedback controller. The findings in this paper are 1) the theoretical derivation and analysis of variations of line frequency and input inductance on a power factor correction approach, 2) guaranteed consistent performance in a wide range of conditions, and 3) that a low switching frequency can be utilized by the proposed method. A MATLAB/Simulink model and a 1.2kW dual boost converter are built to demonstrate the effectiveness of the proposed method.

Modeling of a Dual Stator Induction Generator with and Without Cross Magnetic Saturation

  • Slimene, Marwa Ben;Khlifi, Mohamed Arbi;Fredj, Mouldi Ben;Rehaoulia, Habib
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.284-289
    • /
    • 2015
  • This paper discusses general methods of modelling magnetic saturation in steady-state, two-axis (d & q) frame models of dual stator induction generators (DSIG). In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon) is demonstrated, with and without cross-saturation. For that purpose, two distinct models of DSIGs, with and without cross-saturation, are specified. These two models are verified by an application that is sensitive to the presence of cross-saturation, to prove the validity of these final methods and the equivalence between all developed models. Advantages of some of the models over the existing ones and their applicability are discussed. In addition, an alternative is given to evaluate all saturation factors (static and dynamic) by just calculating the static magnetizing inductance which is simply the magnitude of the ratio of the magnetizing flux to the current. The comparison between the simulation results of the proposed model with experimental results gives a good correspondence, especially at startup.

The Analysis of Current Limiting Performance in a High-$T_c$ Superconductor using Flux-Lock Concepts

  • 임성훈;최효상;김영순;이성룡;한병성
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.229-234
    • /
    • 2002
  • In this paper, we analyzed the fault current performance in a $high-T_{c}$ superconductor(HTS) which was installed on flux-lock reactor with an external magnetic field coil covering the HTS. In this HTS fault current limiter using flux-lock concepts, the initial limiting current level can be controlled by adjusting the inductance of the coils. Furthermore, the current limiting characteristics of $high-T_{c}$ superconducting FCL can be improved by applying the external magnetic field into the $high-T_{c}$ superconductor. This paper discusses current limiting performance according to the inductance of the coil 1 in two cases with ac magnetic field coil or not and suggests the methods to improve the current limiting factor $P_{limit}$, which is defined as the ratio of the limited current $I_{FCL}$ at the current limiting phase to the prospective short -circuit current $I_{PSC}$.TEX> PSC/.

  • PDF

A Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치센서 없는 리럭턴스 동기전동기의 위치제어 시스템)

  • Kim, Min-Huei;Lee, Bok-Yong;Kim, Kyung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.135-141
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC), The problems of DTC for high-dynamic performance and maximum efficiency RSM drive due to a saturated stator linkage flux and nonlinear inductance curve with various load currents, The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance Ld and Lq can be compensated by adapting from measurable the modulus and angle of the stator current space vector. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing Ids=Iqs. This control strategy is proposed to fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at ${\pm}$20 and ${\pm}$1500 rpm. The developed digitally high-performance control system are shown some good response characteristic of control results and high performance features using 1.0kW RSM of which has 2.57 Ld/Lq salient ratio.

  • PDF

Analysis and Implementation of a New Single Switch, High Voltage Gain DC-DC Converter with a Wide CCM Operation Range and Reduced Components Voltage Stress

  • Honarjoo, Babak;Madani, Seyed M.;Niroomand, Mehdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 2018
  • This paper presents a single switch, high step-up, non-isolated dc-dc converter suitable for renewable energy applications. The proposed converter is composed of a coupled inductor, a passive clamp circuit, a switched capacitor and voltage lift circuits. The passive clamp recovers the leakage inductance energy of the coupled inductor and limits the voltage spike on the switch. The configuration of the passive clamp and switched capacitor circuit increases the voltage gain. A wide continuous conduction mode (CCM) operation range, a low turn ratio for the coupled inductor, low voltage stress on the switch, switch turn on under almost zero current switching (ZCS), low voltage stress on the diodes, leakage inductance energy recovery, high efficiency and a high voltage gain without a large duty cycle are the benefits of this converter. The steady state operation of the converter in the continuous conduction mode (CCM) and discontinuous conduction mode (DCM) is discussed and analyzed. A 200W prototype converter with a 28V input and a 380V output voltage is implemented and tested to verify the theoretical analysis.

Increase of Operational Current in a SFCL using Series or Parallel Coupling of Coils (코일의 직.병렬결합을 이용한 초전도 사고전류제한기의 동작전류 증가)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.46-51
    • /
    • 2007
  • The fault current limiting characteristics of superconducting fault current limiter(SFCL) using magnetic coupling of two coils were investigated. This SFCL consists of a high-TC superconducting(HTSC) element and two coils with series or parallel connection on the same iron. In normal time, the inner magnetic fluxes generated by two coils are canceled in case that the HTSC element keeps superconducting state. However, in case that the resistance of the HTSC element happens by a short-circuit the magnetic fluxes, not cancelled, induce the voltages across two coils and the fault current can be limited by the impedance of this SFCL. This SFCL has the merit that the operational current of SFCL can be increased higher than the critical current of the superconducting element by adjusting the inductance ratio between two coils. To confirm its operation, the circuit for the fault simulation was constructed. From the measured voltage and current of the SFCL, it was confirmed that the operating current of this SFCL increased more than that of HTSC element's independent operation.