DOI QR코드

DOI QR Code

Increase of Operational Current in a SFCL using Series or Parallel Coupling of Coils

코일의 직.병렬결합을 이용한 초전도 사고전류제한기의 동작전류 증가

  • 임성훈 (숭실대학교 전기공학부)
  • Published : 2007.12.31

Abstract

The fault current limiting characteristics of superconducting fault current limiter(SFCL) using magnetic coupling of two coils were investigated. This SFCL consists of a high-TC superconducting(HTSC) element and two coils with series or parallel connection on the same iron. In normal time, the inner magnetic fluxes generated by two coils are canceled in case that the HTSC element keeps superconducting state. However, in case that the resistance of the HTSC element happens by a short-circuit the magnetic fluxes, not cancelled, induce the voltages across two coils and the fault current can be limited by the impedance of this SFCL. This SFCL has the merit that the operational current of SFCL can be increased higher than the critical current of the superconducting element by adjusting the inductance ratio between two coils. To confirm its operation, the circuit for the fault simulation was constructed. From the measured voltage and current of the SFCL, it was confirmed that the operating current of this SFCL increased more than that of HTSC element's independent operation.

본 논문에서는 두 코일의 직 병렬결합을 이용한 초전도 사고전류제한기의 사고전류제한 특성을 분석하였다. 구조는 병렬 또는 직렬로 연결된 두 코일과 두 코일 중 하나와 직렬 또는 병렬로 연결되는 초전도 소자로 구성된다. 동작원리는 사고전에는 초전도 소자는 초전도 상태에 있어 병렬 또는 직렬로 연결된 두 코일에 의해 발생되는 자속은 서로 상쇄되어 두 코일에 유기되는 전압이 제로를 유지하게 되지만 사고가 발생할 경우 초전도 소자의 저항이 발생되어 두 코일에서 발생되는 자속은 더 이상 상쇄되지 않게 된다. 따라서 두 코일에 전압이 유기되고 이에 따라 사고전류를 제한하게 된다. 단락실험을 통해 두 코일의 직 병렬결합에 따른 사고전류제한 특성을 분석하였으며 분석을 동해 사고전류제한기의 동작전류를 증가시킬 수 있음을 확인하였다.

Keywords

References

  1. E. Thuries, V. D. Pham, Y. Laumond, T. Verhaege, A. Fevrier, M. Collet, and M. Bekhaled, 'Toward the superconducting fault current limiter,' IEEE Trans. On Power Del., vol. 6, no. 2, pp. 801-808, April 1991 https://doi.org/10.1109/61.131138
  2. W. Paul and M. Chen, 'Superconducting control for surge currents,' IEEE Spectrum, vol. 35, pp. 49-54, May 1998
  3. T. Onishi, M. Kawasumi, K.-I. Sakaki and R. Akimoto, 'An experimental study on a fast self-acting magnetic shield type superconducting fault current limiter,' IEEE Trans. Appl. Supercond., vol. 12, pp. 868-871, Mar. 2002 https://doi.org/10.1109/TASC.2002.1018538
  4. H. Yamaguchi, T. Kataoka, K. Yaguchi, S. Fujita, K. Yoshikawa, and K. Kaiho, 'Characteristics Analaysis of Transformer Type Superconducting Fault Current Limiter,' IEEE Trans. Appl. Supercond., vol. 14, no. 2, pp. 815-818, June 2004 https://doi.org/10.1109/TASC.2004.830284
  5. S. H. Lim, H. S. Choi, and B. S. Han, 'The fault current limiting characteristics of a flux-lock type high-TC superconducting fault current limiter using a series resonance,' Cryogenics, vol. 44, pp. 249-254, April 2004 https://doi.org/10.1016/j.cryogenics.2003.11.002
  6. S. H. Lim, H. S. Choi, and B. S. Han, 'Fault Current Limiting Characteristics due to Winding Direction between Coil 1 and Coil 2 in a flux-lock type SFCL,' Fhys. C, vol. 416, pp. 34-42, November 2004
  7. Sung-Hun Lim, Hyo-Sang Choi, Seokcheol Ko, Hyeong-Gon Kang, and Byoung-Sung Han, 'Fault Current Limiting Characteristics of New Resistive Type Superconducting Fault Current Limiter using Flux Linkage,' phys. Stat sol. (c), vol. 2, no. 5, pp. 1755-1760, March 2005 https://doi.org/10.1002/pssc.200460825
  8. S. H. Lim, H. S. Choi, and B. S. Han, 'The improved hysteresis characteristics of flux-lock type SFCL using third winding,' Phys. C, vol. 406, pp. 37-45, July 2004 https://doi.org/10.1016/j.physc.2004.02.177