• Title/Summary/Keyword: induced electric field

Search Result 454, Processing Time 0.028 seconds

Effect of PbTiO3 Concentration on the Properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Relaxor Ferroelectrics -II. Phase Transition and Electric-field-induced Strains- ($Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$계 완화형 강유전체의 특성에 미치는 PbTiO3 첨가량의 영향 -II. 상전이 및 전계인가 변위특성-)

  • 박재환;김인태;김동영;조서용;흥국선;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.556-562
    • /
    • 1996
  • In order to understand the electrostrictive behavior of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) solid solutions the dielectric constants the electric-field-induced strains and the pyroelectric coefficients of (1-x)PMN-xPT (x=0.1-0.4) were investigated in the temperature range -50~20$0^{\circ}C$. For x=0.1~0.35 where the phase transi-tion is diffusive the strain has a maxima at the temperature of maximum pyroelectric coefficient (depolrizing temperature) rather than the temperature of maximum dielectric constant. For x=0.4 where the phase transition is relatively sharp the strain decreases monotonically as the temperature increases. Relationships among the above experimental results are discussed.

  • PDF

Comparative Study of Conventional and Microwave Sintering of Large Strain Bi-Based Perovskite Ceramics

  • Kang, Jin-Kyu;Dinh, Thi Hinh;Lee, Chang-Heon;Han, Hyoung-Su;Lee, Jae-Shin;Tran, Vu Diem Ngoc
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • A comparative study of microwave and conventional sintering of lead-free $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3-BaZrO_3-CuO$ ceramics is presented. It was found that microwave sintering (MWS) can be successfully applied to the fabrication of large strain Bi-perovskite with electric field-induced strains comparable to those obtained with conventional sintering (CFS). Although MWS resulted in smaller grained microstructures than CFS, the ferroelectric properties were stronger in MWS-derived specimens than in the CFS-derived ones. The piezoelectric strain constant $d_{33}{^*}$ of the CFS-derived specimens reached a maximum value of 372 pm/V after sintering at $1100^{\circ}C$, whereas that of MWS-derived specimens peaked at $950^{\circ}C$ with a $d_{33}{^*}$ value of 324 pm/V.

SHAPE EFFECT ON PERFORMANCE OF MULTILAYER CERAMIC ACTUATOR

  • Wee, S. B.;Jeong, S. J.;Song, J. S.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.163-168
    • /
    • 2003
  • In the present study, the piezoelectricity and polarization of multilayer ceramic actuator, being designed to stack PMN-PZ-PT ceramic layers and Ag-Pd electrode layers alternatively, were investigated under a consideration of geometric factor, the volume ratio of the ceramic to the electrode layers. The actuators were fabricated by tape casting of $0.2Pb(Mg_{1/3}Nb_{2/3)O_3-0.38PbZrO_3-0,42PbTiO_3$ followed by lamination and burnout & co-firing processes. The actuators of $10\times10\times0.6~2\textrm{mm}^3$ in size were formed in a way that $60 ~ 200\mu\textrm{m}$ thick were stacked alternatively with $5\mu\textrm{m}$ thick electrode layer. Increases in polarization and electric field-induced displacement with thickness of the ceramic layer were attributed to change of $90^{\circ}$/$180^{\circ}$ domain ratio, which was affected by interlayer internal stress. The piezoelectricity and actuation behaviors were found to depend upon the volume ratio (or thickness ratio) of ceramic to electrode layers.

  • PDF

Improving Lifetime Prediction Modeling for SiON Dielectric nMOSFETs with Time-Dependent Dielectric Breakdown Degradation (SiON 절연층 nMOSFET의 Time Dependent Dielectric Breakdown 열화 수명 예측 모델링 개선)

  • Yeohyeok Yun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • This paper analyzes the time-dependent dielectric breakdown(TDDB) degradation mechanism for each stress region of Peri devices manufactured by 4th generation VNAND process, and presents a complementary lifetime prediction model that improves speed and accuracy in a wider reliability evaluation region compared to the conventional model presented. SiON dielectric nMOSFETs were measured 10 times each under 5 constant voltage stress(CVS) conditions. The analysis of stress-induced leakage current(SILC) confirmed the significance of the field-based degradation mechanism in the low electric field region and the current-based degradation mechanism in the high field region. Time-to-failure(TF) was extracted from Weibull distribution to ascertain the lifetime prediction limitations of the conventional E-model and 1/E-model, and a parallel complementary model including both electric field and current based degradation mechanisms was proposed by extracting and combining the thermal bond breakage rate constant(k) of each model. Finally, when predicting the lifetime of the measured TDDB data, the proposed complementary model predicts lifetime faster and more accurately, even in the wider electric field region, compared to the conventional E-model and 1/E-model.

Analysis of the Electromagnetic Scattering by a Resistive Strip Grating Tapered Resistivity On a Grounded Dielectric Plane -from Zeores at One Edge to Infinite at the Other Edge- (접지된 유전체층 위에 변하는 저항율을 갖는 저항띠 격자구조에서의 전자파산란 해석 -한쪽 모서리에서 0이고 다른쪽 모서리로 가면서 무한대로 변하는 경우-)

  • Yoon, Uei-Joong
    • The Journal of Information Technology
    • /
    • v.8 no.2
    • /
    • pp.77-84
    • /
    • 2005
  • In this paper, electromagnetic scattering problems by a resistive strip grating with tapered resistivity on a grounded dielectric plane according to strip width and spacing, relative permittivity and thickness of dielectric layers, and incident angles of a electric wave are analyzed by applying the Fourier-Galerkin Moment Method known as a numerical procedure. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. The resistivity of resistive strips in this paper varies from zeroes at one edge to infinite at the other edge, then the induced surface current density on the resistive strip is expanded in a series of Jacobi polynomials of the order ${\alpha}=0.2,\;{\beta}=-0.2$ as a orthogonal polynomials. The numerical results of the geometrically normalized reflected power in this paper are compared with those for the existing perfectly conducting strip. The numerical results of the normalized reflected power for conductive strips case with zero resistivity in this paper show in good agreement with those of existing papers.

  • PDF

Analysis on particle deposition onto a heated, horizontal free-standing wafer with electrostatic effect (정전효과가 있는 가열 수평웨이퍼로의 입자침착에 관한 해석)

  • Yoo, Kyung-Hoon;Oh, Myung-Do;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1284-1293
    • /
    • 1997
  • The electrostatic effect on particle deposition onto a heated, Horizontal free-standing wafer surface was investigated numerically. The deposition mechanisms considered were convection, Brownian and turbulent diffusion, sedimentation, thermophoresis and electrostatic force. The electric charge on particle needed to calculate the electrostatic migration velocity induced by the local electric field was assumed to be the Boltzmann equilibrium charge. The electrostatic forces acted upon the particle included the Coulombic, image, dielectrophoretic and dipole-dipole forces based on the assumption that the particle and wafer surface are conducting. The electric potential distribution needed to calculate the local electric field around the wafer was calculated from the Laplace equation. The averaged and local deposition velocities were obtained for a temperature difference of 0-10 K and an applied voltage of 0-1000 v.The numerical results were then compared with those of the present suggested approximate model and the available experimental data. The comparison showed relatively good agreement between them.

Crystallization of Amorphous Silicon Films Using Joule Heating

  • Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.20-24
    • /
    • 2014
  • Joule heat is generated by applying an electric filed to a conductive layer located beneath or above the amorphous silicon film, and is used to raise the temperature of the silicon film to crystallization temperature. An electric field was applied to an indium tin oxide (ITO) conductive layer to induce Joule heating in order to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced within the range of a millisecond. To investigate the kinetics of Joule-heating induced crystallization (JIC) solid phase crystallization was conducted using amorphous silicon films deposited by plasma enhanced chemical vapor deposition and using tube furnace in nitrogen ambient. Microscopic and macroscopic uniformity of crystallinity of JIC poly-Si was measured to have better uniformity compared to that of poly-Si produced by other methods such as metal induced crystallization and Excimer laser crystallization.

Control of free surface shape in the electromagnetic casting process (전자기 주조공정에서의 자유표면 형상 제어)

  • 박재일;강인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.612-615
    • /
    • 1996
  • In the continuous casting process, molten metal contacts the mold wall and the molten metal surface is subject to the mold oscillation. The mold oscillation results in the oscillation marks on the surface of solidified steel, which has undesirable effects on the quality of slabs. In order to reduce the oscillation marks by achieving soft contact of molten metal with the mold surface, alternating magnetic field is applied to the surface of molten metal. However, if the magnetic field strength becomes too strong, the melt flow induced by the magnetic field. causes the instability of the molten metal surface, which has also the bad influence on the slab quality. Therefore, it is very important to choose the optimal position of the inductor coil and the optimal level of electric power to minimize the surface defects. In the present work, as a first step toward the optimization problem of the process, numerical studies are performed to investigate the effects of coil position and the electric power level on the meniscus shape and the flow field. As numerical tools, the boundary integral equation method(BIEM) is used for the magnetic field analysis and the finite difference method (FDM) with orthogonal grid generation is used for the flow analysis.

  • PDF

Effect of Electrode Structures on Electron Emission of the $Pb(Zr_{0.56}Ti_{0.44})O_3$ Ferroelectric Cathode ($Pb(Zr_{0.56}Ti_{0.44})O_3$ 강유전체 음극의 전극 모형에 따른 전자 방출 특성)

  • Seo, Min-Su;Hong, Ki-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.699-707
    • /
    • 2010
  • Electric-field-induced electron emission from the three kinds of $Pb(Zr_{0.56}Ti_{0.44})O_3$ ferroelectric cathodes with different electrode structure has been investigated. Regardless of the electrode structures, a threshold field of the each cathode was 2.5-2.6kV/mm, which is 3 times higher than the coercive field of $Pb(Zr_{0.56}Ti_{0.44})O_3$ material. Although the waveform of the electron currents was affected by the structure of the electrode, no significant difference for the emission properties such as the peak current and the pulse width was observed from the three kinds of the cathodes. However, the current density of the cathode was dependent on the electrode structure. From the simulation of electric field distribution, the surface flashover, and the injury region of the cathode surface, it was proved that the prime electrons were initiated at the electrode-ceramic-vacuum triple point by field emission and the emission currents were strongly enhanced by the surface plasma.

Microwave Electric Field and Magnetic Field Simulations of an ECR Plasma Source for Hyperthermal Neutral Beam Generation

  • Lee, Hui-Jae;Kim, Seong-Bong;Yu, Seok-Jae;Jo, Mu-Hyeon;NamGung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.501-501
    • /
    • 2012
  • A 2.45 GHz electron cyclotron resonance (ECR) plasma source with a belt magnet assembly configuration (BMC) was developed for hyperthermal neutral beam (HNB) generation. A plasma source for high flux HNB generation should be satisfied with the requirements: low pressure operation, high density, and thin plasma. The ECR plasma source with BMC achieved high density at low operation pressure due to electron confinement enhancement caused by high mirror ratio and drifts in toroidal direction. The 2.45 GHz microwave launcher had a circularly bended WR340 waveguide with slits. The microwave E-field profile induced by the microwave launcher was studied in this paper. The E-field profile was a cups field perpendicular to B-filed at ECR zone. The optimized E-field profile and B-field were found for effective ECR heating.

  • PDF