• Title/Summary/Keyword: indoor temperature

Search Result 1,112, Processing Time 0.027 seconds

A Study on Improved Heating Performance of an Apartment Housing Unit (공동주택 세대별 난방 성능 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Most hot water heating valves for apartments are constant-flow types, which limit the flow rate through an individual household for even distribution of heating water to other households. The constant-flow type is implemented by an on-off control. As a result, heating water is supplied intermittently and hence, indoor air temperature also fluctuates. Returning water temperature is also high, which reduces energy efficiency. To implement continuous feedback control, the indoor temperature dynamics was simulated to fit a measured temperature history by a state-of-the-art physical model. From the model, it was found that the most important disturbance is outdoor temperature and its effect on indoor temperature lasts about an hour. To cope with the slow response and the significant disturbance, a prediction control with proportional feedback is proposed. The control was found to be successful in implementing continuous heating water flow and improved indoor temperature control.

Evaluation of Comfortableness in Railroad Electric Rolling Stock - Focused on Temperature and Humidity - (철도 전동차내의 쾌적성 평가에 관한 연구 - 온도 및 습도를 중심으로 -)

  • 박덕신;배상호;정병철;이주열
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.41-48
    • /
    • 2003
  • Most of people spends their times in indoor about 85% of a day. Thus, indoor is more serious than outdoor concerned with the health. We discussed comfortableness in a railroad electric rolling stock, and focused on temperature and humidity. Electric rolling stock is one of major public transportation system because of an increasing in population and heavy traffic problems. The passengers are under the influence of indoor air quality such as air temperature, relative humidity and air velocity. Ventilation system in electric rolling stock should be designed for the health and comfort. One of the main aims is to create an acceptable thermal environment without draught problem. The draught sensation increases when the air temperature decreases and the air velocity increases. Airflow in electric rolling stork is turbulent. Temperature and humidity gradients in electric rolling stock have been studied. And, the difference between mean temperature and rotative humidity measured at 0.7, 0.9, 1.2, 1.7m above the floor. It has been found that temperature and relative humidity with large fluctuations caused more draught complaints.

An Experimental Study on Indoor Thermal Characteristics in accordance with the Use of Windows and Blinds in Double Skin Facade in Summer (이중외피에서 창문 개폐 및 블라인드 설치에 따른 하절기 실내 열환경 특성 변화 실험 연구)

  • Kim, Dong-Kyun;Yoon, Kap-Chun;Kang, Jae-Sik;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.59-67
    • /
    • 2011
  • This paper is focused on the effect of indoor temperature rise according to the use of windows and blinds in double skin facade in summer. For the experiment, we set up the mock-up of double skin facede and measuring temperature and solar radiation. Total 7 cases were used for measuring solar transmittance and indoor temperature rise. When the venetian blind was not installed, solar transmittance was 44.5%, and solar transmittance for the case that installed the venetian blind (angle 0) was 22.5%. Cases that opened inner and outdoor windows for ventilation showed lower indoor temperature rise than cases with closed windows. In addition, Case 5 (opened inner and outdoor windows with the venetian blind (angle 0) to reduce solar transmittance) indicated lower indoor temperature rise than Case 3(opened inner and outdoor windows). Consequently, Case 5 which uses inner and outdoor window for ventilation and venetian blind to reduce solar transmittance is the most effective way to reduce indoor temperature rise among all cases tested in this research.

Evaluation of Indoor Environmental Factors in Office Building with Underfloor Air-Conditioning (UFAC) System

  • Chung, Kwang-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.36-45
    • /
    • 2001
  • During the last decade, an increasing interest in Underfloor Air-Conditioning (UFAC) systems has emerged. The purpose of this paper is to evaluate the indoor environmental performance of office buildings with UFAC system in order to develope the design prototype of this system. The physical measurements and the Interviewing survey of occupant's sensation responses to the environment were carried out. Measurements and survey were made of the thermal environmental factors such as air temperature, relative humidity, air velocity, globe temperature, and the other several environmental factors such as the sound level and the illuminance of working plane, etc. And, the air quality was evaluated by measuring the concentration of suspended particles, carbon monoxide, and carbon dioxide in the room. Furthermore, the paper appraises the various indoor environmental factors of the room by using post-occupancy evaluation (POE) method in office building with UFAC system, and thus, it suggests the basic data for assessing the indoor comfort based on field measurements and survey .

  • PDF

Optimal Design for Indoor Thermal Environment based on CFD Simulation and Genetic Algorithms (CFD 연성해석과 유전자 알고리즘을 이용한 실내 열환경 최적설계에 관한 연구)

  • 김태연;이윤규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.111-120
    • /
    • 2004
  • The optimal design method of indoor thermal environment using CFD coupled simulation and genetic algorithms (GA) is developed in this study. CFD could analyze the thermal environment considering the distribution of temperature, velocity, etc. in a room. Therefore, It would be appropriate to use CFD for the optimal design method considering their distribution. In this paper, the optimal design means the most appropriate boundary conditions of the room among the conditions where the design target of indoor therm environment is achieved. Two step optimal indoor thermal environment design method is proposed. It includes the GA for searching the optimal indoor thermal environment design. To examine the performance of this method, the optimal design of hybrid ventilation system, which uses the natural cross ventilation and the radiation-cooling panel is conducted. The optimal design which satisfies the design target (thermal comfort, minimum cooling load, minimum vertical temperature difference) is found using two step optimal design method.

A Study on Air Pollution in Indoor Gymnasiums (실내체육관에서의 공기오염에 관한 연구)

  • 윤승욱;김윤신;이종대;이철민;조용성
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.32-37
    • /
    • 2000
  • Nowadays, a new word called SBS(sick building syndrome) has been come into existence. At the point of time when an interest about indoor air pollution and, according to this, countermeasure plan are internationally. Moreover institutional countermeasure should be attended at national level since indoor air quality in public places where many people gather is directly connected with national health. Especially indoor pollution of indoor stadia where all sorts of sports are held can give rise to every kinds of respiratory ailments to players as well as audiences. So it is presented as a main factor that indoor space of stadia is crowded with players and audiences compared with other kinds of indoor space. Therefore, in this research to analyze pollution degree of indoor circumstance for gymnasium and exercising room of folk wrestling. basketball, judo, wrestling, hapkido, swordsmanship and boxing making indoor gymnasium and exercising room an object, when 7 items were measures such as thermocircumstance(temperature, relative humidity, air current, intensity of illumination), dust, carbon monoxide, and carbon dioxide being based on the indoor environmental standard of the first clause of Article 45 of public utilization service which is showed at public hygiene of the Ministry of Health and Social Affairs, it was showed that indoor temperature, relative humidity, air current and intensity of illumination were over standard amount at the most of folk wrestling gymnasium and exercising room. Indoor density of carbon monoxide was preserved to the extent of standard amount (10ppm) at all gymnasiums but carbon dioxide was not in excess of standard amount(1,000 ppm) at most of gymnasiums. Indoor density of dust induced from respiration exceeded the standard amount (150 $\mu\textrm{g}$/㎥) at all gymnasiums of the folk wrestling. Since the folk wrestling players and participants feel physical subjective symptom seriously, in other words the degree of indoor air pollution at gymnasiums and exercising rooms of the folk wrestling is very high, fundamental solution and countermeasure plan should be presented.

  • PDF

A Study of Indoor Air Quality of Public Facilities in Chung-Nam Area (충남지역 미적용 다중이용시설의 실내공기질에 관한 연구)

  • Hong, Sung-Chul;Jou, Hye-Mee;Cho, Tae-Jin;Lee, Che-Won;Jung, Yong-Taek;Son, Bu-Soon
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.2
    • /
    • pp.35-45
    • /
    • 2008
  • In order to recommend criteria for the administration law on indoor air quality, this study was conducted to examine the distribution and the concentration of indoor air pollutants ($PM_{10},\;CO_2$, CO, HCHO, TBC, $NO_2$, Rn, VOCs, asbestos, $O_3$) in public facilities in the Chung-Nam area. The concentrations of indoor air pollutants were obtained from sixty seven public facilities such as a cinema, an office, a restaurant, a theater and an academy. This study was performed from August to December, 2005. The results of this study showed that the concentrations of indoor air pollutants such as $PM_{10},\;CO_2$, CO, HCHO, TBC, Rn and $O_3$ were less than the recommended limits. However, the average concentration of VOCs was $521.73{\mu}g/m^3$ (GM : $221.69{\mu}g/m^3$), which was higher than the recommended limit of $400{\mu}g/m^3$. Moreover, the average concentration of $NO_2$ was 345.66ppb (GM : 69.95ppb), which was higher than the recommended limit of 50 ppb. The correlation between the concentrations of indoor air pollutants and the type of facilities with respect to $CO_2$, TBC and Rn was statistically low (p<0.05). However, the correlation was high in terms of the CO and $O_3$ concentrations (p<0.01). No relationship between the indoor air pollutants and the type of facilities was observed for $PM_{10}$, VOCs and $NO_2$. The year of construction was compared to the concentrations of indoor air pollutants. Specifically, when the construction date was less than 3 years, the HCHO, VOCs and TBC concentrations were $44.75{\mu}g/m^3,\;555.07{\mu}g/m^3$ and $337.79CFU/m^3$, respectively. These concentrations were $120{\mu}g/m^3$ and $211.84CFU/m^3$ higher for VOCs and TBC than the concentrations obtained from the facilities more than 3 years. However, the concentration of HCHO was similar between the facilities older and younger than 3 years of age. Year, temperature, humidity and indoor air pollutant correlation analyses showed that temperature and humidity, temperature and TBC, temperature and $O_3,\;PM_{10}$ and $NO_2$, HCHO and VOCs, $CO_2$ and Rn had positive relationships. However temperature and Rn, humidity and $CO_2,\;CO_2$ and $O_3,\;O_3$ and Rn had negative relationships. Accordingly, it will be necessary to manage the factors affecting indoor air quality so that the residents can have a more comfortable and healthier living environment. Ultimately, the results of this study are expected to be utilized as baseline data.

Evaluation of Indoor Thermal Environment for Cooling in Apartment House (공동주택의 냉방시 실내온열환경 평가 연구)

  • 김난행;안병욱
    • Journal of the Korean housing association
    • /
    • v.14 no.3
    • /
    • pp.1-8
    • /
    • 2003
  • It is not sufficient to control the indoor thermal environment using only one or two parameters by itself as human response for the control of indoor thermal environment. So a proper environmental thermal index is required for the control of indoor thermal environment effectively. In this study, the physical environment was measured and analysed and the skin temperature of the subjects and their response were investigated to evaluate the optimum thermal comfort range for cooling season in an apartment house. As a result, the optimal temperature was 26.1$^{\circ}C$ and the temperature ranges which more than 80% responded as satisfactory were 24.1~28.$0^{\circ}C$, respectively. As the OT had most significant interrelation with the PMV, it is desirable to use the OT in evaluating the thermal environment during cooling. Also, the comfort range was concluded between OT 25.5~27.3$^{\circ}C$ by appointing the PMV of -0.5~0.5 as the optimum comfort condition. In addition, the Human responses were compared with calculated PMV, OT and MRT and the relationships are suggested in order to utilize to control indoor thermal environment.

A Field Measurement Study on Heat Storage/Emission Characteristics of Tower Type Apartment Structures in Winter Season (겨울철 난방시 탑상형 아파트 구조체의 축·방열 특성에 대한 현장측정 연구)

  • Chang, Hyun-Jae;Cho, Keun-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.190-195
    • /
    • 2012
  • In this study, as a complementary study of the former study on indoor thermal environment in a tower type apartment house at tropical nights, a field measurement was conducted in winter season. Mainly, characteristics of heat storage and heat emission in apartment structures, in this study, were investigated. As results, indoor air temperature was changed in the range of $22.5^{\circ}C{\pm}1.0^{\circ}C$, and followed not the change of outdoor air temperature but the changed pattern of floor surface temperature. Wall surface temperature was unresponsive to the change of floor surface temperature compared with the change of indoor air temperature because wall structure was composed of concrete which has large heat capacity, and was changed in the range of $22.3^{\circ}C{\pm}0.6^{\circ}C$. Heat was stored continuously into the structures of wall and ceiling through the measurement term. and this means that a large heat capacity of the apartment structure acts as a disadvantage in winter season, too. As a total review of the study with the former study, a large heat capacity of the apartment structure acts against indoor thermal comfort in winter season as well as in summer season.

A Study on the Indoor Climate Characteristics and Thermal Sensation Vote of the Earthen House in Summer Season (흙집의 하절기 실내 물리적 환경 특성과 온열감에 관한 연구)

  • Chan, Kook;Jeon, Ji-Hyeon;Shin, Yong-Gyu
    • Journal of the Korean housing association
    • /
    • v.17 no.5
    • /
    • pp.9-16
    • /
    • 2006
  • The researches on the environmental friendly buildings have carried out on the materials, environmental property, technical elements and etc., and various buildings with these green materials have built and under construction nowadays and became a new trend of the green building. And recently, new building technique which builds the wall with the soil and wood and very easy to construct (called M Earthen House) was introduced as the green building and rapidly propagated. But the research on the indoor climatic characteristics, the ability to control the environmental comfort and the influence to the human beings of these buildings are not sufficiently identified yet. In this paper, the indoor environmental characteristics and the temperature controlling ability of these buildings in summer season were measured and analysed by the Portable Indoor Air Quality Monitor(BABUC/A, LSI) measuring equipments, ana the subjective test on the thermal environment of the subjects were carried out to evaluate the thermal comfort. The results can be summarized as follows; 1) Compared to the outdoor dry bulb temp.($15.4{\sim}28.7^{\circ}C$), the indoor temp. was $19.5{\sim}26.8^{\circ}C$. It showed the temperature controlling ability of the M earthen house was outstanding. And the indoor relative humidity, compared to the outdoor($45.4{\sim}100%$), was $58.1{\sim}76.4%$, it showed the humidity controlling ability of the M earthen house was also outstanding. 2) The thermal environment was evaluated as 'comfort'(neutral-slightly warm) and the humidity was also evaluated as 'comfort'(neutral-slightly humid). So, the results of the physical and subjective evaluation on the indoor thermal comfort in summer season were 'neutral' and 'comfort' coincidently, it was confirmed that the controlling ability of the indoor temperature and humidity of the M earthen house was very excellent.