• Title/Summary/Keyword: indoor 3D model

Search Result 111, Processing Time 0.028 seconds

Efficient 3D Scene Labeling using Object Detectors & Location Prior Maps (물체 탐지기와 위치 사전 확률 지도를 이용한 효율적인 3차원 장면 레이블링)

  • Kim, Joo-Hee;Kim, In-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.996-1002
    • /
    • 2015
  • In this paper, we present an effective system for the 3D scene labeling of objects from RGB-D videos. Our system uses a Markov Random Field (MRF) over a voxel representation of the 3D scene. In order to estimate the correct label of each voxel, the probabilistic graphical model integrates both scores from sliding window-based object detectors and also from object location prior maps. Both the object detectors and the location prior maps are pre-trained from manually labeled RGB-D images. Additionally, the model integrates the scores from considering the geometric constraints between adjacent voxels in the label estimation. We show excellent experimental results for the RGB-D Scenes Dataset built by the University of Washington, in which each indoor scene contains tabletop objects.

A Study on the Development and Utilization of Indoor Spatial Information Visualization Tool Using the Open BIM based IFC Model (개방형 BIM 기반 IFC 모델을 이용한 실내공간정보 시각화 도구개발 및 활용방안 연구)

  • Ryu, Jung Rim;Mun, Son Ki;Choo, Seung Yeon
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.41-52
    • /
    • 2015
  • MOLIT (Minister of Land, Infrastructure and Transport) authorized Indoor Spatial Information as Basic spatial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little advantage to utilize as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilize for the maintenance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial Information with data visualization. The open-sources of IFC Exporter, a inner program of Revit (Autodesk Inc), is used to output Indoor Spatial Information. Directs 3D Library is also operated to visualize Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilized in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UAV (Unmaned Areal Vehicle), the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial information policy, high level of interoperability as indoor spatial information objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.

A Study on the Development of an Indoor Positioning Support System for Providing Landmark Information (랜드마크 정보 제공을 위한 실내위치측위 지원 시스템 구축에 관한 연구)

  • Ock-Woo NAM;Chang-Soo SHIN;Yun-Soo CHOI
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.130-144
    • /
    • 2023
  • Recently, various positioning technologies are being researched based on signal-based positioning and image-based positioning to obtain accurate indoor location information. Among these, various studies are being conducted on image positioning technology that determines the location of a mobile terminal using images acquired through cameras and sensor data collected as needed. For video-based positioning, a method of determining indoor location is used by matching mobile terminal photos with virtual landmark images, and for this purpose, it is necessary to build indoor spatial information about various landmarks such as billboards, vending machines, and ATM machines. In order to construct indoor spatial information on various landmarks, a panoramic image in the form of a road view and accurate 3D survey results were obtained through c 13 buildings of the Electronics and Telecommunications Research Institute(ETRI). When comparing the 3D total station final result and the terrestrial lidar panoramic image coordinates, the coordinates and distance performance were obtained within about 0.10m, confirming that accurate landmark construction for use in indoor positioning was possible. By utilizing these terrestrial lidar achievements to perform 3D landmark modeling necessary for image positioning, it was possible to more quickly model landmark information that could not be constructed only through 3D modeling using existing as-built drawings.

A Deterministic Ray Tube Method for an Indoor Propagation Prediction Model

  • Suh, Choon-Gil;Koh, Hyung-Wha;Son, Hae-Won;Myung, Noh-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • This paper presents a new 3-D ray tracing technique based on the image theory with newly defined ray tubes. The proposed method can be applied to indoor environments with arbitrary building layouts and has high computational efficiency compared to the precedent methods resorting to the ray launching scheme. It predictions are in good agreement with the measurements.

  • PDF

A Deterministic Ray Tube Method for an Indoor Propagation Prediction Model

  • Son, Hae-Won;Myung, Noh-Hoo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1067-1071
    • /
    • 2000
  • This paper presents a new 3-D ray tracing technique based on the image theory with newly defined ray tubes. The proposed method can be applied to indoor environments with arbitrary building layouts and has high computational efficiency compared to the precedent methods resorting to the ray launching scheme. Its predictions are in good agreement with the measurements

  • PDF

An Indoor Pedestrian Simulation Model Incorporating the Visibility (가시성을 고려한 3차원 실내 보행자 시뮬레이션 모델)

  • Kwak, Su-Yeong;Nam, Hyun-Woo;Jun, Chul-Min
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.133-142
    • /
    • 2010
  • Many pedestrian or fire evacuation models have been studied last decades for modeling evacuation behaviors or analysing building structures under emergency situations. However, currently developed models do not consider the differences of visibility of pedestrians by obstacles such as furniture, wall, etc. The visibility of pedestrians is considered one of the important factors that affect the evacuation behavior, leading to making simulation results more realistic. In order to incorporate pedestrian's visibility into evacuation simulation, we should be able to give different walking speeds according to differences of visibility. We improved the existing floor field model based on cellular automata in order to implement the visibility. Using the space syntax theory, we showed how we split the indoor spaces depending on the different visibilities created by different levels of structural depths. Then, we improved the algorithm such that pedestrians have different speeds instead of simultaneous movement to other cells. Also, in order for developing a real time simulation system integrated w ith indoor sensors later, we present a process to build a 3D simulator using a spatial DBMS. The proposed algorithm is tested using a campus building.

Finding Isolated Zones through Connectivity Relationship Analysis in Indoor Space (실내공간의 연결성 분석을 통한 고립지역 탐색)

  • Lee, Seul-Ji;Lee, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.229-240
    • /
    • 2012
  • In Korea, u-City has been constructed as IT-based new city with introduction of the ubiquitous concept. However, most currently provided u-services are just monitoring services based on the USN(Ubiquitous Sensor Network) technology, so spatial analysis is insufficient. Especially, buildings have been rapidly constructed and expanded in multi-levels, and people spend a lot of time in indoor space, so indoor spatial analysis is necessary. Therefore, connectivity relationship in indoor space is analyzed using the topological data model. Topological relationships could be redefined due to the dynamic changes of environment in indoor space, and changes could have an effect on analysis results. In this paper, the algorithms of finding isolated zones is developed by analyzing connectivity relationship between space objects in built-environments after changes of environment in indoor space due to specific situation such as fire. And the system that visualizes isolated zones as well as three-dimensional data structure of indoor space is developed to get the analysis result by using the analysis algorithms.

Syntax-based Accessibility Analysis Algorithm for Indoor Spaces (실내공간을 위한 기반 Syntax 접근성 분석 알고리즘)

  • Kim, Hye-Yeong;Jeon, Cheol-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2007.10a
    • /
    • pp.247-256
    • /
    • 2007
  • Accessibility is a field of study that has primarily been applied to urban or transportation problems two dimensionally. However, in large complex buildings as shopping centers or hospitals, inter-spatial accessibility among compartments has to be taken into account such as in building layouts or evacuation planning. This study expands space syntax theory, one of accessibility-related methodologies used for computing connectivity in urban or architectural spaces, into 3D indoor spaces. Although space syntax is basically a topology-based theory that does not consider general costs such as distance or time, this study suggests modification that incorporates different types of impedances in moving between places including distances, turns and transfers between floors. The proposed method is applied to a 3D campus building model in computing and displaying the accessibility to exit doors or cohesive accessibility among similar functions.

  • PDF

Topological Analysis in Indoor Shopping Mall using Ontology

  • Lee, Kangjae;Kang, Hye-Young;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.511-520
    • /
    • 2013
  • Recently, human activities have expanded from outdoor spaces to indoor spaces since a lot of complex buildings were constructed over the world. Especially, visitors in a shopping mall would like to receive specific information of interest regarding various shopping-related activities as well as shopping itself. However, when it comes to providing the information, existing guide services have some drawbacks. Firstly, the existing services cannot provide visitors with the information of other stores simply and promptly on the current location. Secondly, the services have difficulties in representation and share of the shopping-related knowledge, and in providing inferred information. Thus, the purpose of this study is to develop a method that allows topological analysis utilizing ontology technique around the current position in such shopping mall in order to provide shopping-related information. For this, the shopping activity ontology model is designed, and based on the ontology model, inferencing rules are defined in order to extract the information of interest efficiently through semantic queries. Also, a geocoding method in indoor spaces is used regarding the current location, and optimal routing analysis, which is one of topological analysis, is applied with the result from the semantic queries. As a result, an Android application is developed for 3D visualization and user interface.

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF