An Indoor Pedestrian Simulation Model Incorporating the Visibility

가시성을 고려한 3차원 실내 보행자 시뮬레이션 모델

  • 곽수영 (서울시립대학교 공간정보공학과) ;
  • 남현우 (서울시립대학교 공간정보공학과) ;
  • 전철민 (서울시립대학교 공간정보공학과)
  • Received : 2010.11.10
  • Accepted : 2010.12.17
  • Published : 2010.12.31

Abstract

Many pedestrian or fire evacuation models have been studied last decades for modeling evacuation behaviors or analysing building structures under emergency situations. However, currently developed models do not consider the differences of visibility of pedestrians by obstacles such as furniture, wall, etc. The visibility of pedestrians is considered one of the important factors that affect the evacuation behavior, leading to making simulation results more realistic. In order to incorporate pedestrian's visibility into evacuation simulation, we should be able to give different walking speeds according to differences of visibility. We improved the existing floor field model based on cellular automata in order to implement the visibility. Using the space syntax theory, we showed how we split the indoor spaces depending on the different visibilities created by different levels of structural depths. Then, we improved the algorithm such that pedestrians have different speeds instead of simultaneous movement to other cells. Also, in order for developing a real time simulation system integrated w ith indoor sensors later, we present a process to build a 3D simulator using a spatial DBMS. The proposed algorithm is tested using a campus building.

실내 화재와 같은 재난, 재해시의 보행자의 행태를 모델링하거나 건축물의 구조를 분석하기 위해 지난 수십 년간 다양한 보행모델, 또는 화재대피모델들이 연구되어 왔다. 그러나 최근까지 개발된 모델은 대피 시 구조물들에 의해 보행자의 시야가 제한되는 것을 고려하고 있지 않다. 보행자의 시야는 대피에 영향을 미치는 중요한 요인 중 하나이므로, 이를 고려해야 현실적인 시뮬레이션 결과를 도출할 수 있다. 대피시뮬레이션에서 보행자의 시야에 대한 영향을 고려하는 방법은 시야의 제한 정도에 따라서 보행자의 대피 속도를 다르게 하는 것이다. 본 연구에서는 보행자의 시야에 따라 서로 다른 대피 속도를 갖게 하기 위해서 cellular automata를 이용한 floor field 모델을 기반으로 개선된 알고리즘을 제시하였다. 공간구문론(space syntax)을 활용하여 시야에 따라 공간을 분할하고, 동시다발적인 움직임 대신 분할된 공간별로 다른 이동속도를 갖게 하는 개선된 알고리즘을 구현하여 대피의 행태를 적절하게 모델링할 수 있게 하였다. 또한, 본 연구에서는 추후 실내 센서와의 연동을 통한 실시간 시뮬레이션 시스템으로의 개발을 위하여 공간DBMS를 이용한 3차원 보행자 시뮬레이터의 구현과정을 예시하였다. 캠퍼스 건물을 대상으로 개선된 알고리즘의 시뮬레이션 테스트를 수행하였다.

Keywords

References

  1. Ahuja, R. K., Magnate, T. L., and Orlin, J. B., 1993, Network Flows: Theory, Algorithms and Applications.
  2. Blue, V. J. and Adler, J. L., 1999, Using cellular automata microsimulation to model pedestrian movements, In A. Ceber (Ed.), Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jerusalem, Israel, pp. 235-254.
  3. Burstedde, C., Klauck, K., Schadschneider, A., and Zittartz, J., 2001, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, vol. 295, no. 3-4, pp. 507-525. https://doi.org/10.1016/S0378-4371(01)00141-8
  4. Cho, D., 1999, A Study on the Tools of Analysis in the Space Syntax Theory, Architectural Institute of Korea, vol. 156, pp. 71-76.
  5. Gwynne, S., Galea, E.R., Owen, M., Lawrence, P.J., and Filippidis, L.L., 2005, A systematic comparison of building EXODUS predictions with experimental data from the Stapelfeldt trials and the Milburn House evacuation, Applied Mathematical Modeling, vol. 29, No. 9, pp. 818-851. https://doi.org/10.1016/j.apm.2004.11.005
  6. Hamacher, H. W. and Tjandra, S. A., 2001, Mathematical modeling of evacuation problemsa state of art. In M. Schreckenberg and S. Sharma, (Eds.), Pedestrian and Evacuation Dynamics, Springer-Verlag, Berlin, pp. 227-266.
  7. Helbing, D., Farkas, I., Molnár, P., and Vicsek, T., 2001, Simulation of pedestrian crowds in normal and evacuation situations, In M. Schreckenberg and S. Sharma, (Eds.), Pedestrian and Evacuation Dynamics, Springer-Verlag, Berlin, pp. 21-58.
  8. Helbing, D., Farkas, I., and Vicsek, T., 2000, Simulating dynamical features of escape panic, Nature, vol. 407, pp. 487-490. https://doi.org/10.1038/35035023
  9. Helbing, D. and Molnár, P., 1997, Self-organization phenomena in pedestrian crowds, In F. Schweitzer (ed.), Self-Organization of Complex Structures: From Individual to Collective Dynamics, Gordon & Beach, London, UK.
  10. Henein, C. and White, T., 2005, Agent-based modeling of forces in crowds, Springer, vol. 3415, pp. 173–184.
  11. Henein, C. and White, T., 2007, Macroscopic effects of microscopic forces between agents in crowd models, Physica A, vol. 373, pp. 694-712. https://doi.org/10.1016/j.physa.2006.06.023
  12. Hightower, J., Boriello, G., and Want, R., 2000, SpotON: An indoor 3D location sensing technology based on RF signal strength. University of Washington CSE Report.
  13. Kirchner, A., and Schadschneider, A., 2002, Simulation of evacuation processes using a bionics- inspired cellular automaton model for pedestrian dynamics, Physica A, vol. 312, pp. 260-276. https://doi.org/10.1016/S0378-4371(02)00857-9
  14. Klupfel, H., Konig, T., Wahle, J., and Schreckenberg, M., 2002, Microscopic simulation of evacuation processes on passenger ships, In Proceedings of Fourth International Conference on Cellular Automata for Research and Industry, Karlsruhe, Germany.
  15. Kretz, T. and Schrekenberg, M., 2006, Floor fieldand Agent-based Simulation Tool, International Symposium of Transport Simulation, Lausanne, Switzerland.
  16. Li, B. et al., 2006, Indoor positioning techniques based on wireless LAN, 1st IEEE International Conference on Wireless Broadband and Ultra Wideband Communication, Sydney, Australia, pp. 13-16.
  17. Lo, S.M., Fang, Z., Lin, P., and Zhi, G.S. 2004, An evacuation model: the SGEM package, Fire Safety Journal, vol. 39, no. 3, pp. 169-190. https://doi.org/10.1016/j.firesaf.2003.10.003
  18. Nishinari, K., Kirchner, A., Namazi, A., and Schadschneider, A., 2005, Simulations of Evacuation by an Extended Floor Field CA Model, Traffic and Granular Flow '03, pp. 405-410.
  19. Penn, A., B. Hillier, D. Banister, and Xu, J., 1998, Configurational modeling of urban movement networks, Environment and Planning BPlanning & Design, vol. 25, no. 1, pp. 59-84. https://doi.org/10.1068/b250059
  20. PostgreSQL, http://www.postgresql.org/.
  21. PostgreSQL/npgsql, http://pgfoundry.org/projects/npgsql/.
  22. QuantumGIS, http://www.qgis.org/.
  23. Randell, C. and Muller H., 2001, Low cost indoor positioning system, Ubicomp 2010 Conference of Ubiquitous Computing, pp. 42–48.
  24. SharpMap, http://www.codeplex.com/SharpMap/.
  25. Zhou, R., 2006, Wireless indoor tracking system (WITS), In doIT Conference on Software Research, Verlag Heidelberg, Germany, pp. 163-177.
  26. 전철민, 2010, "개선된 Floor Field 기반 보행 시뮬레이션 모델," 한국공간정보시스템학회논문지, 제 12권, 제1호, pp. 76-84.
  27. 전철민, 2007, "GIS 기반 Space Syntax를 이용한 대중교통 접근성," 한국공간정보시스템학회논문지, 제9권, 제3호, pp. 25-33.