• 제목/요약/키워드: individual (Large Magellanic Cloud)

검색결과 8건 처리시간 0.023초

21cm RADIO CONTINUUM EMISSION SURVEY OF THE LARGE MAGELLANIC CLOUD

  • KIM SUNGEUN
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.223-226
    • /
    • 2005
  • We present the results of a 21cm radio continuum aperture synthesis mosaic of the Large Magellanic Cloud (LMC), made by combining data from 1344 separate pointing centers using the Australia Telescope Compact Array (ATCA) and the 64-m Parkes single-dish telescope. The resolution of the mosaicked images is 55' ( 10 pc, using a distance to the LMC) and a region $10^{\circ}{\times}12^{\circ}$ is surveyed.

Chemical Composition of RM_1-390 - Large Magellanic Cloud Red Supergiant

  • Yushchenko, Alexander V.;Jeong, Yeuncheol;Gopka, Vira F.;Vasil'eva, Svetlana V.;Andrievsky, Sergey M.;Yushchenko, Volodymyr O.
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권3호
    • /
    • pp.199-205
    • /
    • 2017
  • A high resolution spectroscopic observation of the red supergiant star RM_1-390 in the Large Magellanic Cloud was made from a 3.6 m telescope at the European Southern Observatory. Spectral resolving power was R=20,000, with a signal-to-noise ratio S/N > 100. We found the atmospheric parameters of RM_1-390 to be as follows: the effective temperature $T_{eff}=4,250{\pm}50K$, the surface gravity ${\log}\;g=0.16{\pm}0.1$, the microturbulent velocity $v_{micro}=2.5km/s$, the macroturbulence velocity $v_{macro}=9km/s$ and the iron abundance $[Fe/H]=-0.73{\pm}0.11$. The abundances of 18 chemical elements from silicon to thorium in the atmosphere of RM_1-390 were found using the spectrum synthesis method. The relative deficiencies of all elements are close to that of iron. The fit of abundance pattern by the solar system distribution of r- and s-element isotopes shows the importance of the s-process. The plot of relative abundances as a function of second ionization potentials of corresponding chemical elements allows us to find a possibility of convective energy transport in the photosphere of RM_1-390.

GAIA PARALLAX ZERO POINT FROM RR LYRAE STARS

  • Gould, Andrew;Kollmeier, Juna A.
    • 천문학회지
    • /
    • 제50권1호
    • /
    • pp.1-5
    • /
    • 2017
  • Like Hipparcos, Gaia is designed to give absolute parallaxes, independent of any astrophysical reference system. And indeed, Gaia's internal zero-point error for parallaxes is likely to be smaller than any individual parallax error. Nevertheless, due in part to mechanical issues of unknown origin, there are many astrophysical questions for which the parallax zero-point error ${\sigma}({\pi}_0)$ will be the fundamentally limiting constraint. These include the distance to the Large Magellanic Cloud and the Galactic Center. We show that by using the photometric parallax estimates for RR Lyrae stars (RRL) within 8kpc, via the ultra-precise infrared period-luminosity relation, one can independently determine a hyper-precise value for ${\pi}_0$. Despite their paucity relative to bright quasars, we show that RRL are competitive due to their order-of-magnitude improved parallax precision for each individual object relative to bright quasars. We show that this method is mathematically robust and well-approximated by analytic formulae over a wide range of relevant distances.

A catalog of infrared supernova remnants in the Large Magellanic Cloud

  • 석지연;구본철
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.104.1-104.1
    • /
    • 2011
  • We present a catalog of infrared supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). We have searched the Spitzer archival data for infrared counterparts to all 45 known SNRs in the LMC, and identified 21 which is 47% of the known SNRs. Seven of them are newly detected: SNR 0450-70.9, SNR in N4, N103B, DEM L241, DEM L249, DEM L316A, and DEM L316B. All newly discovered SNRs show emission at several IRAC 3.4, 4.5, 5.8, and 8.0 micron bands and/or MIPS 24 and 70 micron bands. Most SNRs show shell structures. We derive infrared fluxes of these newly detected SNRs. The catalog contains general information of each SNR such as location, age, and SN type together with AKARI and/or Spitzer fluxes. For the entire SNR sample, we examine their infrared colors and the possible correlation of the infrared fluxes with the fluxes at other wavelengths. For the newly detected SNRs except the SNR in N4, we also performed follow-up imaging observations of [Fe II] 1.644 micron line using IRIS2 mounted on the Anglo Australian Telescope. Three out of six SNRs show [Fe II] emission corresponding to their infrared shells. [Fe II] knots are also detected in N103B which show good spatial correlation to infrared emission seen at Spitzer images as well as knotty $H{\alpha}$ emission. We investigate the characteristics and origin of the infrared emission in individual SNRs, and discuss the environmental and evolutionary effects.

  • PDF

Proper motion of Galactic globular cluster NGC 104

  • Kim, Eun-Hyeuk;Kim, Min-Sun
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Globular clusters (GCs) are known to be one of the oldest objects in the Milky Way. Therefore the dynamical informations of GCs are very important to understand the formation and evolution of our Galaxy. Motion of GCs in the halo of Galaxy can be traced by radial velocities of individual stars and proper motions of GCs. Measuring the radial velocities of stars in GCs has been challenging for decades because the brightness of stars (even for the brightest stars) in GCs are too faint (V>14) to measure the radial velocities. The available large telescopes (D>4m) enable us to observe the spectra of stars in the red giant branch of GCs, and it is now more plausible to measure the radial velocities of stars in GCs. On the contrary it is still very difficult to measure the sky-projected two-dimensional motion of GCs in Galaxy even with the large telescopes because the distance to GCs is quite large (~10kpc) compared to the spatial resolution of present-day large ground-based telescopes. Instruments on-board Hubble Space Telescope are ideal to study the proper motion of GCs thanks to their extremely high spatial resolution (~0.05arcsec). We report a study of proper motion of NGC 104, one of the most metal-rich Milky Way GCs, based-on archival images of NGC 104 observed using HST/ACS. Using the stars in Small Magellanic Cloud as reference coordinate, we are able to measure the proper motions of individual stars in NGC 104 with a high precision. We discuss the internal dynamics of stars in NGC 104 by comparing proper motion results based-on shorter (<1yr) and longer (~7yrs) time durations.

  • PDF

NEAR-IR POLARIMETRY AROUND 30 DORADUS: I. SEPARATION OF THE GALACTIC SOURCES

  • Kim, Jae-Yeong;Pak, Soo-Jong;Choi, Min-Ho;Kang, Won-Seok;Kandori, Ryo;Tamura, Motohide;Nagata, Tetsuya;Kwon, Jung-Mi;Kato, Daisuke;Jaffe, Daniel T.
    • 천문학회지
    • /
    • 제44권4호
    • /
    • pp.135-142
    • /
    • 2011
  • A $200'{\times}200'$ region around 30 Doradus in the Large Magellanic Cloud (LMC) is observed and analyzed in the near-infrared. We obtain polarimetry data in the J, H, and Ks bands using the SIRIUS polarimeter SIRPOL at the Infrared Survey Facility 1.4 m telescope. We measure the Stokes parameters of 2562 point-like sources to derive the degree of polarization and the polarization position angles. We discuss the statistics of the groups classified by color-magnitude diagram and proper motions of the sources, in order to separate the Galactic foreground sources from those present in the LMC. We notice that groups classified by the proper motion data show a tendency towards different polarimetric properties.

Modeling Grain Rotational Disruption by Radiative Torques and Extinction of Active Galactic Nuclei

  • Giang, Nguyen Chau;Hoang, Thiem
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.66.1-66.1
    • /
    • 2021
  • Extinction curves observed toward individual Active Galactic Nuclei (AGN) usually show a steep rise toward Far-Ultraviolet (FUV) wavelengths and can be described by the Small Magellanic Cloud (SMC)-like dust model. This feature suggests the dominance of small dust grains of size a < 0.1 ㎛ in the local environment of AGN, but the origin of such small grains is unclear. In this paper, we aim to explain this observed feature by applying the RAdiative Torque Disruption (RATD) to model the extinction of AGN radiation from FUV to Mid-Infrared (MIR) wavelengths. We find that in the intense radiation field of AGN, large composite grains of size a > 0.1 ㎛ are significantly disrupted to smaller sizes by RATD up to dRATD > 100 pc in the polar direction and dRATD ~ 10 pc in the torus region. Consequently, optical-MIR extinction decreases, whereas FUV-near-Ultraviolet extinction increases, producing a steep far-UV rise extinction curve. The resulting total-to selective visual extinction ratio thus significantly drops to RV < 3.1 with decreasing distances to AGN center due to the enhancement of small grains. The dependence of RV with the efficiency of RATD will help us to study the dust properties in the AGN environment via photometric observations. In addition, we suggest that the combination of the strength between RATD and other dust destruction mechanisms that are responsible for destroying very small grains of a <0.05 ㎛ is the key for explaining the dichotomy observed "SMC" and "gray" extinction curve toward many AGN.

  • PDF

Optical spectroscopy of LMC SNRs to reveal the origin of [P II] knots

  • Aliste C., Rommy L.S.E.;Koo, Bon-Chul;Seok, Ji Yeon;Lee, Yong-Hyun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.65.2-66
    • /
    • 2021
  • Observational studies of supernova (SN) feedback are limited. In our galaxy, most supernova remnants (SNRs) are located in the Galactic plane, so there is contamination from foreground/background sources. SNRs located in other galaxies are too far, so we cannot study them in detail. The Large Magellanic Cloud (LMC) is a unique place to study the SN feedback due to their proximity, which makes possible to study the structure of individual SNRs in some detail together with their environment. Recently, we carried out a systematic study of 13 LMC SNRs using [P II] (1.189 ㎛) and [Fe II] (1.257 ㎛) narrowband imaging with SIRIUS/IRSF, four SNRs (SN 1987A, N158A, N157B and N206), show [P II]/[Fe II] ratio much higher than the cosmic abundance. While the high ratio of SN 1987A could be due to enhanced abundance in SN ejecta, we do not have a clear explanation for the other cases. We investigate the [P II] knots found in SNRs N206, N157B and N158A, using optical spectra obtained last November with GMOS-S mounted on Gemini-South telescope. We detected several emission lines (e.g., H I, [O I], He I, [O III], [N II] and [S II]) that are present in all three SNRs, among other lines that are only found in some of them (e.g., [Ne III], [Fe III] and [Fe II]). Various line ratios are measured from the three SNRs, which indicate that the ratios of N157B tend to differ from those of other two SNRs. We will use the abundances of He and N (from the detection of [N II] and He I emission lines), together with velocity measurements to tell whether the origin of the [P II] knots are SN ejecta or CSM/ISM. For this purpose we have built a family of radiative shock with self-consistent pre-ionization using MAPPINGS 5.1.18, with shock velocities in the range of 100 to 475 km/s. We will compare the observed and modeled line fluxes for different depletion factors.

  • PDF