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Abstract: Like Hipparcos, Gaia is designed to give absolute parallaxes, independent of any astrophysical
reference system. And indeed, Gaia’s internal zero-point error for parallaxes is likely to be smaller than
any individual parallax error. Nevertheless, due in part to mechanical issues of unknown origin, there
are many astrophysical questions for which the parallax zero-point error σ(π0) will be the fundamentally
limiting constraint. These include the distance to the Large Magellanic Cloud and the Galactic Center.
We show that by using the photometric parallax estimates for RR Lyrae stars (RRL) within 8kpc, via the
ultra-precise infrared period-luminosity relation, one can independently determine a hyper-precise value
for π0. Despite their paucity relative to bright quasars, we show that RRL are competitive due to their
order-of-magnitude improved parallax precision for each individual object relative to bright quasars. We
show that this method is mathematically robust and well-approximated by analytic formulae over a wide
range of relevant distances.
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1. INTRODUCTION

Gaia will obtain astrometry for > 109 stars, with par-
allax precisions down to σ(π) . 6µas for the brightest
stars, V . 12. In contrast to traditional pre-Hipparcos
astrometry, Gaia is designed to measure so-called “ab-
solute parallaxes”. However, since nothing in nature is
truly “absolute”, it behooves us to specify more pre-
cisely exactly what Gaia will measure.

In traditional narrow angle astrometry, one mea-
sures the parallactic motion of some target star relative
to a set of reference stars, and from this measures the
“relative parallax” πrel = πtarget − πreference, where the
last quantity is the mean parallax of the reference stars.
One then estimates the distances of the reference stars,
and hence πreference, by some non-astrometric method,
usually photometric. If, for example, the reference stars
are five times farther than the target star, and if their
distances can be estimated to, say 30% precision, and
assuming N = 4 reference stars, then the contribu-
tion of the error due to the reference frame is only
σ(πreference)/πtarget = 30%/5/

√
4 = 3%, which may

well be lower than the contribution from the astromet-
ric precision of the πrel measurement. In a variant of
this approach, one might use external quasars or galax-
ies as the reference frame, in which case πreference = 0
to a precision adequate for most purposes.

By contrast Hipparcos used wide-angle astrometry,
which does not require any external reference frame for
parallaxes (although it does for proper motions). To
understand the basic principle of this approach, con-
sider two telescopes that are rigidly separated by 90◦.
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Let the first of these telescopes make two measurements
of a star in the ecliptic, six months apart, both times
at quadrature. That is, both of these measurements
will suffer maximal parallactic deflection, but in oppo-
site directions. Now let the second telescope measure
the positions of a second star, also in the ecliptic at the
same epochs. Since this second star is, by construc-
tion, aligned perfectly with the Sun, it will not suffer
any parallactic deflection. Hence the relative change in
position of these two stars directly gives the absolute
parallax of the first. Now, of course, one of these two
measurements of the second star could not be made in
practice because it would lie directly behind the Sun.
However, the point is that by simultaneously observing
stars that are affected by parallax by substantially dif-
ferent (and easily calculable) amounts, one can extract
the absolute parallax.

For this method to work to a given specified pre-
cision, the “basic angle” between the two telescopes
must remain fixed to the same precision. Or rather, any
changes in the basic angle must be understood to this
specified level of precision. If the basic-angle oscillations
have power on timescales shorter than the rotation pe-
riod of the two telescopes, then the amplitude of these
oscillations can be derived (and so corrected) from the
observations themselves. However, oscillations at the
rotation period are indistinguishable from a zero-point
offset of all parallaxes that are being measured. Un-
certainty about this amplitude is therefore equivalent
to introducing a “πreference” term, as in narrow-angle
astrometry.

For reasons that are not presently understood, the
actual amplitude of these oscillations is about 1 mas,
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which is orders of magnitude higher than expected from
the original design, and also orders of magnitude higher
than the parallax precision of the best measurements.
Happily, the great majority of this oscillation can be
measured from engineering data, but an ultra-precise
estimate of the Gaia system parallax zero point, π0,
will require external calibration.

It may well be that for most applications a preci-
sion determination of π0 is irrelevant. However, it is
easy to imagine applications for which this is impor-
tant. For example, the parallax of the Large Magel-
lanic Cloud (LMC) is presently estimated to be πLMC =
20µas (for a comparison of measurements see de Grijs
et al. 2014). Consider measurements of 10,000 LMC
stars at V = 16, each with precision σ(π) = 40µas.
Each measurement by itself would be “useless”, having
a 200% error. Nevertheless, the combination of all of
them would have an error σ(πLMC) = 0.4µas, i.e., a 2%
error. However, if the zero-point error σ(π0) ∼ 2µas,
then this LMC distance measurement would be de-
graded by a factor 5.

One method to measure π0 is from quasars. There
is about one such object per square degree to V0 = 18
(e.g., Hewett et al. 2001). For the ∼ 3/4 of these that
are relatively unextincted, the Gaia precision1 is antici-
pated to be σ(π) ∼ 140µas. Since these are each known
a priori to have zero parallax (or rather π ≪ 1µas), the
30,000 that lie over 3π sterradians can be combined
to yield σ(π0) ∼ 0.8µas. There are ∼ 3 times more
quasars (18 < V0 < 19) than V0 < 18, but each con-
tributes substantially less information. Including all
quasars, we estimate σ(π0) ∼ 0.6µas from this tech-
nique.

This estimate then sets the benchmark for other
techniques. If these other methods can achieve a simi-
lar or better precision, then they can serve as an inde-
pendent check on the quasars and improve the overall
measurement of π0.

2. RR LYRAE STAR BASED ZERO POINT : NAIVE
“C IRCULAR ” A RGUMENT

At infrared wavelengths, RR Lyrae stars obey a period-
luminosity (PL) relation

Lλ = L0,λ(P/P0)
β (1)

where P0 is chosen to be near the mean period of
the sample (Longmore et al. 1986, Longmore et al.
1990). There is some scatter around this relation,
which is usually expressed in magnitudes σ(Mλ) =
(5/ ln 10)〈(δL)2〉1/2/L, but which we will express for
convenience in terms of the error in inferred distance

ǫ =
〈(δL)2〉1/2

L
(2)

1The Gaia site http://www.cosmos.esa.int/web/gaia/science-
performance gives σ(π) = (−1.631 + 680.766z +
32.732z2)1/2[0.986 + (1 − 0.986)(V − I) where z =
min(100.4(G−15) , 10−1.2)

At present, ǫ is not known because it appears to
be below the precision of the best RR Lyrae paral-
lax measurements made to date (e.g., Benedict et al.
2011; Madore et al. 2013; Dambis et al. 2014; Braga
et al. 2015). It may plausibly be ǫ ∼ 0.01 or even
less depending on wavelength (although see theoret-
ical estimates from Bono et al. 2001). This scat-
ter will be easily probed by Gaia. RR Lyrae stars
with distance D < 2 kpc will have parallax errors
σ(π) ∼ 6µas and therefore fractional distance errors
σ(π)/π ∼ 0.6%(D/1 kpc)−1. Thus, it will be quite no-
ticeable if the nearby RR Lyrae stars show intrinsic lu-
minosity scatter such that ǫ > 0.01.

The basic approach then is to measure L0 using the
relatively nearby stars D . 2 kpc (see recent overview
by Beaton et al. 2016). Because their parallaxes are
so much larger than any possible zero point error, the
latter can to first approximation be ignored, and the
very high precision parallax measurements can then be
used to measure L0 (as well as σ). Then one can apply
this knowledge to much more distant RR Lyrae stars,
e.g., at D ∼ 5 kpc. While the parallaxes of these stars
(π ∼ 200µas) are also much larger than any possible π0,
the error in the individual distances due to scatter in
the PL relation is only ǫπ ∼ 2µas. Not only is this now
of order the plausible values of π0, more to the point
it is much smaller than the Gaia measurement error
for these stars, σ(π) ∼ 15µas. Since the uncertainty
in the photometric parallax estimate is much smaller
than the parallax measurement error, it basically does
not contribute. Hence, each parallax measurement of
such relatively distant RR Lyrae stars constitutes an
independent estimate of π0 with error 15µas per star.
Thus, even though there are many fewer RR Lyrae stars
than quasars, they can be competitive because of much
smaller errors for each measurement.

Then, with π0 measured, one can go back and im-
prove the determination of L0 by properly accounting
for this zero-point offset. The last step may appear cir-
cular, but we will see that each element of this descrip-
tion, including the naively “circular” argument, maps
directly onto a rigorous statistical approach.

3. MATHEMATICAL DESCRIPTION

Strictly speaking we should simultaneously fit for four
parameters, L0, β, ǫ, and π0. However, β and ǫ are
essentially uncorrelated from the other parameters. In
the interests of focusing on the main determinants of
the problem, we will take β and ǫ as given.

We can then write the relation between observed
and modeled parallaxes

πobs,k = π0 +Aπfid,k ± σk; πfid ≡
√

4πFdered,k

L0,fid(P/P0)β

(3)
where Fdered,k is the dereddened observed flux of the
kth star in the appropriate infrared band, and L0,fid is
the initial guess for L0 (which will then be corrected
by measuring A). The error σk is the quadrature sum
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of two contributions. The first is from the scatter in
the PL relation, namely ǫπ. The second is the mea-
surement error. For now we will assume that all the
stars are in the photon limit2 and that therefore this
error is inversely proportional to the square root of the
flux in the Gaia bands. Since RR Lyrae luminosities are
roughly independent of period in optical bands, this im-
plies (if we restrict attention to relatively unextincted
stars), that the error is inversely proportional to the
flux. Assuming that MG = 0.6 in the Gaia band, and
adopting the anticipated Gaia precision in the photon
limit, one then finds

σ2(π) = (ǫπ)2 +

(

κ

π

)2

κ = (57µas)2 (4)

We then follow the standard procedure of con-
structing a Fisher matrix and approximating it as an
integral (e.g., Gould 1995). First, one forms the inverse
covariance matrix of the two parameters (π0, A), which
are labeled “0” and “1”, respectively

Bij =
∑

k

πi+j
k

ǫ2π2
k + κ2/π2

k

=
1

ǫ2

∑

k

πi+j−2
k

1 + (κ/ǫ)2/π4
k

(5)

Switching variables to distance r = AU/π and taking
the sum to an integral, we obtain

Bij =
1

ǫ2

∑

k

(rk/AU)
2−i−j

1 + (rk/D∗)4
(6)

Bij →
3πn(AU)i+j−2

ǫ2

∫ rmax

0

dr
r4−i−j

1 + (r/D∗)4
(7)

where we have assumed a uniform density n and that
the RR Lyrae stars can be effectively incorporated only
over 3π sterradians. Here

D∗ ≡ AU

√

ǫ

κ
. (8)

Substituting x = r/D∗ yields

Bij =
3πnD3

∗

ǫκ

(

κ

ǫ

)

i+j

2

bij(xmax), bij(x) =

∫ x

0

dy
y4−i−j

1 + y4

(9)
Unfortunately, only the off-diagonal terms of bij

can be evaluated in closed form, b01(x) = ln(1+x4)1/4.
However, for x & 2.5, b very quickly approaches its
asymptotic limit3

bij(x) →
(

x− w lnx
lnx w − x−1

)

, w ≡ (1/4)!(−1/4)!

(10)

2A discussion of these errors is given in Gould, Kollmeier & Sesar
2016.

3This is because the next terms in the expansion are
+xi+j−5/(5− i− j), i.e., 4 powers of x below the leading term
(plus an additional factor of a few).

The constant w = (1/4)!(−1/4)! is obviously4 just
slightly larger than unity, w ≃ 1.111. The naive ar-
gument given in Section 2 maps directly onto Equa-
tions (9) and (10). The prefactor 3πnD3

∗
= 3N∗ is

(3 times) the number of RR Lyrae stars within the
radius D∗ at which the astrometric and PL-relation
errors are equal. The information content about π0

is equivalent to a naive integral outside this radius,
b11 ≃ N∗(x− 1)/ǫ2. The reason that the Gaia precision
constant κ does not explicitly enter this formula is that
the volume element (r2) exactly cancels the distance
dependence of the inverse square of the errors (π/κ)2.
Hence the amplitude of this essentially constant integral
is set at D∗ where κ/π = ǫπ.

The information content about the PL relation is
equivalent to a naive integral within most of the interior
volume b00 ≃ N∗(1− 1/x)/ǫκ.

Finally, the formal mathematical quantification of
the “circular argument” given in Section 2 is the corre-
lation coefficient ρ

ρ(x) = − lnx
√

(x− w)(w − x−1)
(11)

For modest values of xmax, ρ is quite large. For exam-
ple, ρ(2.5, 3, 4) = −(0.92, 0.91, 0.88). These high values
degrade the naive information content about π0 by

[σ(π0)]
2 = C00 =

ǫ2

3N∗

b−1
00

1− ρ2
(12)

where C ≡ B−1 is the covariance matrix and b00 ≃ x−w
Before applying these equations to the problem of

measuring π0, we must first account for the fact that
Gaia precisions do not further improve as the source
gets brighter than G=12. For RR Lyrae stars, this cor-
responds to distance Dmin = 1.9 kpc, and so to

xmin = Dmin/D∗ = 1.08

(

ǫ

0.01

)

−1/2

(13)

Then the formula for the inverse covariance matrix B
remains valid provided one substitutes

bij → bij −∆bij (14)

where

∆bij =

∫ xmin

0

dy
y4−i−j

1 + y4
− y4−i−j

1 + y2x2
min

(15)

In the relevant range of xmin, this adjustment is quite
small and below the level of the errors made by various
other approximations in this treatment. For example
∆bij(xmin = 1) = (0.014, 0.020, 0.020, 0.028).

4. NUMERICAL ESTIMATES

To make numerical estimates of the precision that can
be achieved, we first estimate n0 = 5.8 kpc−3 based

4because the factorial function is logarithmically convex and 0! =
1
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Figure 1. Precision of Gaia estimate of σ(π0) based on RR
Lyrae star method, assuming all RR Lyrae stars are incor-
porated out to a maximum distance indicated on the ab-
scissa. Solid lines show result of numerical integration as-
suming intrinsic distance scatter from the PL relation of
ǫ = (0.01, 0.02, 0.03) (bottom to top), while dashed lines
show the analytic approximation given by Equation (10).
Open and filled circles are at x = (2.0, 2.5, 3.0, . . .), showing
that the approximation becomes essentially exact for x ≥ 2.5

on Hipparcos RR Lyrae stars that are V < 11 and
that satisfy the Layden et al. (1996) “Halo-3” criteria
(which were also adopted by Popowski & Gould 1998
and Gould & Popowski 1998). The restrictive magni-
tude limit is to ensure completeness. Of course, the so-
called “thick disk” RR Lyrae stars that do not satisfy
the “Halo-3” criteria will also contribute to the deter-
mination. They are nevertheless excluded to be conser-
vative because their flattened three-space distribution
implies that they will contribute much less leverage at
large distances compared to halo RR Lyrae stars.

Figure 1 shows the estimated precision σ(π0) that
can be achieved assuming that the RR Lyrae distance
scatter in a particular IR band is ǫ = 0.01, 0.02, or
0.03, and as a function of the upper distance limit
rmax to which are RR Lyrae measurements are es-
sentially complete. At, for example, rmax = 5kpc,
these precisions are σ(π0) = (0.63, 0.82, 1.01)µas for
ǫ = (0.01, 0.02, 0.03). This shows that the RR Lyrae
star method is comparable to the quasar method.

The solid lines in Figure 1 show the results of nu-
merical integration, i.e., using Equations (9), (14), and
(15), while the dashed lines show the results of using the
analytic approximation in Equation (10). The solid and
open circles on these curves denote the evaluations at
x = (2.0, 2.5, 3.0 . . .). As predicted analytically in the
text above, the approximations are essentially perfect
for x ≥ 2.5.

Of course, RR Lyrae stars are not distributed uni-
formly around the Sun, but the formalism developed
here only requires that this be true averaged over shells.
Even this assumption is not strictly valid, but remains
approximately valid for r < 8 kpc, since the declining
density toward the Galactic anti-center is compensated
by the increasing density toward the Galactic center.
However, the approximation becomes completely in-
valid for r & 8 kpc since at that point the density is
declining in all directions. Hence, the fundamental lim-
its of the method are illustrated by the abscissa cut-off
in Figure 1.

5. RR LYRAE DISTANCE SCALE

It is also of interest to estimate how well the zero point
of the PL relation can be determined. From algebraic
manipulation of Equations (9) and (10), this is related
to σ(π0) by

σ(A)

σ(π0)
=

√

ǫ

κ

x− w

w − x−1
=

D∗

AU

√

x− w

w − x−1
(16)

Since, σ(π0) ∼ O(µas), while AU/D∗ ∼ O(mas), this
implies that the zero point of the RR Lyrae PL relation
can be measured with precision of order 10−3. From
RR Lyrae itself (and 3 other RRab stars), the abso-
lute zero point is known to approximately 5% (Bene-
dict et al. 2011) using trigonometric parallaxes from
HST. For RRc variables, the most precise values of the
zero point come from the trigonometric parallax of RZ
Cep (Benedict et al. 2011) and the statistical paral-
lax analysis from the CARRS survey (Kollmeier et al.
2013), although these values are in marginal tension.
As demonstrated above, Gaia precision will be dramat-
ically superior.

To date, the only observables on which there has
been a measurable dependence of RR Lyrae luminosity
are period and metal abundance. The availablity of pre-
cision GAIA parallaxes may allow to test for additional
observable parameters. One simple test (suggested by
the referee) would be to measure the gradient of the
luminosity (after fitting out the dependence on period
and luminosity) with Galactocentric distance. Since it
is known that there are at least two halo populations
with different scale lengths, such a test could probe the
presence of some systematic difference between these
populations. If such a signature were found, it could
then guide a more detailed search for observables that
are preferentially in one of these populations over the
other.

While it has been historically difficult to measure
distances to individual objects (Bessel 1838) in the
modern era precision wide-field astrometry has proved
challenging. Indeed, the historic Hipparcos mission
measurements opened up substantial debate on the dis-
tance to the Pleides as the then-new astrometric de-
termination disagreed with traditional values. At that
time, it was suggested that correlated errors could be
to blame (Pinsonneault et al., 1998; Soderblom et al.,
1998). The Gaia collaboration has now published a
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new astrometric value consistent with the historic Plei-
des distance (Brown et al. 2016), but the controversy
highlights the intrinsic difficulty of these measurements
and the great utility of having multiple independent
distance-scale crosschecks.

6. CONCLUSION

The Gaia mission data promises to transform our un-
derstanding of the Milky Way. In this work, we have
shown that exploiting photometric parallax estimates
for RRL within 8 kpc in conjunction with the precise
IR P-L relation for these objects, one can measure the
absolute parallax zero-point σ(π0) to precision of less
than 0.5(µas). Not only is this extremely precise, but it
is also comparable to, and completely independent of,
measurements of this quantity from quasars. We fur-
ther show that once this is determined, one can refine
the precision of the IR P-L zero point well beyond what
is possible from photometric measurements alone. We
anticipate this independent method will be of immedi-
ate use to the astronomical community.
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