DOI QR코드

DOI QR Code

GAIA PARALLAX ZERO POINT FROM RR LYRAE STARS

  • Gould, Andrew (Max-Planck-Institute for Astronomy) ;
  • Kollmeier, Juna A. (Observatories of the Carnegie Institution of Washington)
  • Received : 2016.09.03
  • Accepted : 2016.12.28
  • Published : 2017.02.28

Abstract

Like Hipparcos, Gaia is designed to give absolute parallaxes, independent of any astrophysical reference system. And indeed, Gaia's internal zero-point error for parallaxes is likely to be smaller than any individual parallax error. Nevertheless, due in part to mechanical issues of unknown origin, there are many astrophysical questions for which the parallax zero-point error ${\sigma}({\pi}_0)$ will be the fundamentally limiting constraint. These include the distance to the Large Magellanic Cloud and the Galactic Center. We show that by using the photometric parallax estimates for RR Lyrae stars (RRL) within 8kpc, via the ultra-precise infrared period-luminosity relation, one can independently determine a hyper-precise value for ${\pi}_0$. Despite their paucity relative to bright quasars, we show that RRL are competitive due to their order-of-magnitude improved parallax precision for each individual object relative to bright quasars. We show that this method is mathematically robust and well-approximated by analytic formulae over a wide range of relevant distances.

Keywords

References

  1. Beaton, R. et al. 2016, The Carnegie-Chicago Hubble Program. I. A New Approach to the Distance Ladder Using Only Distance Indicators of Population II, ApJ, submitted
  2. Benedict, G. F., McArthur, B. E., Feast, M. W., et al. 2011, Distance Scale Zero Points from Galactic RR Lyrae Star Parallaxes, AJ, 142, 187 https://doi.org/10.1088/0004-6256/142/6/187
  3. Bessel, W. F. 1838, On the parallax of 61 Cygni, MNRAS, 4, 152 https://doi.org/10.1093/mnras/4.17.152
  4. Bono, G., Caputo, F., Castellani, V., Marconi, M., & Storm, J. 2001, Theoretical Insights into the RR Lyrae K-Band Period-Luminosity Relation, MNRAS, 326, 1183 https://doi.org/10.1046/j.1365-8711.2001.04655.x
  5. Braga, V. F., Dall'Ora, M., Bono, G., et al. 2015, On the Distance of the Globular Cluster M4 (NGC 6121) Using RR Lyrae Stars. I. Optical and Near-Infrared Period-Luminosity and Period-Wesenheit Relations, ApJ, 799, 165 https://doi.org/10.1088/0004-637X/799/2/165
  6. Brown, A. G. A., Vallenari, A., Prusti, R., et al. 2016, Gaia Data Release 1: Summary of the astrometric, photometric, and survey properties, A&A, 595, A2 https://doi.org/10.1051/0004-6361/201629512
  7. Dambis, A. K., Rastorguev, A. S., & Zabolotskikh, M. V. 2014, Mid-Infrared period-Luminosity Relations for Globular Cluster RR Lyrae, MNRAS, 439, 3765 https://doi.org/10.1093/mnras/stu226
  8. de Grijs, R., Wicker, J. E., & Bono, G. 2014, Clustering of Local Group Distances: Publication Bias or Correlated Measurements? I. The Large Magellanic Cloud, AJ, 147, 122 https://doi.org/10.1088/0004-6256/147/5/122
  9. Gould, A. 1995, Analytic Error Estimates, ApJ, 440, 510 https://doi.org/10.1086/175292
  10. Gould, A., Kollmeier, J. A., & Sesar, B. 2016, TGAS Error Renormalization from the RR Lyrae Period-Luminosity Relation, arxiv/1609.06315
  11. Gould, A., & Popowski, P. 1998, Systematics of RR Lyrae Statistical Parallax. III. Apparent Magnitudes and Extinctions, ApJ, 508, 844 https://doi.org/10.1086/306448
  12. Hewett, P. C., Foltz, C. B., & Chaffee, F. H. 2001, The Large Bright Quasar Survey. VII. The LBQS and FIRST Surveys, AJ, 122, 518 https://doi.org/10.1086/321169
  13. Kollmeier, J. A., Szczygie l, D. M., Burns, C. R., et al. 2013, The Absolute Magnitude of RRc Variables from Statistical Parallax, ApJ, 775, 57 https://doi.org/10.1088/0004-637X/775/1/57
  14. Layden, A. C., Hanson, R. B., Hawley, S. L., Klemola, A. R., & Hanley, C. J. 1996, The Absolute Magnitude and Kinematics of RR Lyrae Stars Via Statistical Parallax, AJ, 112, 2110 https://doi.org/10.1086/118167
  15. Longmore, A. J., Fernley, J. A., & Jameson, R. F. 1986, RR Lyrae Stars in Globular Clusters - Better Distances from Infrared Measurements?, MNRAS, 220, 279 https://doi.org/10.1093/mnras/220.2.279
  16. Longmore, A. J., Dixon, R., Skillen, I., Jameson, R. F., & Fernley, J. A. 1990, Globular Cluster Distances from the RR Lyrae Log(period)-Infrared Magnitude Relation, MNRAS, 247, 684
  17. Madore, B. F., Hoffman, D., Freedman, W. L., et al. 2013, A Preliminary Calibration of the RR Lyrae Period-Luminosity Relation at Mid-InfraredWavelengths: WISE Data, ApJ, 776, 135 https://doi.org/10.1088/0004-637X/776/2/135
  18. Pinsonneault, M. H., Stauffer, J., & Soderblom, D. R. 1998, The Problem of HIPPARCOS Distances to Open Clusters. I. Constraints from Multicolor Main Sequence Fitting, ApJ, 504, 170 https://doi.org/10.1086/306077
  19. Popowski, P., & Gould, A. 1998, Systematics of RR Lyrae Statistical Parallax. I. Mathematics, ApJ, 506, 259 https://doi.org/10.1086/306216
  20. Soderblom, D. R., King, J. R., Hanson, R. B., et al. 1998, The Problem of HIPPARCOS Distances to Open Clusters. II. Constraints from Nearby Field Stars, ApJ, 504, 192 https://doi.org/10.1086/306073

Cited by

  1. Impact of basic angle variations on the parallax zero point for a scanning astrometric satellite vol.603, 2017, https://doi.org/10.1051/0004-6361/201730781