• Title/Summary/Keyword: incremental iterative technique

Search Result 19, Processing Time 0.024 seconds

Nonlinear bending analysis of bidirectional graded porous plates with elastic foundations relative to neutral surface

  • Amr E. Assie
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • The applicability of a novel incremental-iterative technique with 2D differential/integral quadrature method (DIQM) in analyzing the nonlinear behavior of Bi-directional functionally graded (BDFG) porous plate based on neutral surface is verified in the present works. A formulation of four variables high shear deformation theory is used to describe the kinematic relations with respect to neutral surface rather than mid-plane. Bi-directional material distributions are presented by power functions through both thickness and axial directions. Porosities and voids are distributed by different cosine functions. The large deformations are included within the sense of nonlinear von Kármán strains. The integro-differential equilibrium equations with associated modified boundary conditions are solved numerically and iteratively by using 2D DIQM. Model validations and parametric analysis are depicted to present the influence of neutral axis, nonlinear strains, gradation indices, elastic foundations, and modified boundary conditions on the static deflection in addition to normal and shear stresses. The proposed model is effective in analyzing the static behavior of many real applications in nuclear reactors, marine and aerospace structures with large deformations.

A Study on the Damage Propagation of an Aircraft Material During Forming (항공기 재료 성형시의 손상진전에 관한 연구)

  • 김위대;김진희;김승조
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.131-140
    • /
    • 1995
  • In this paper damage propagation of a material during forming is investigated with the concept of continuum damage mechanics. An isotropic damage model based on the theory of materials of type N is adopted to describe the damage process of a ductile material with large elasto-viscoplastic deformation. The stiffness degradation of the loaded material is chosen as a damage measure. The highly nonlinear equilibrium equations are reduced to the incremental weak form and approximated by the total Lagrangian finite element method. To simulate contact condition, extended interior penalty method with modified coulomb friction law is adopted. The displacement control method along with the modified Riks' continuation technique is used to solve the incremental iterative equations. As numerical examples, upsetting problem and backward extrusion problem are simulated and the results of damage propagation and $J_2$ stress contours with and without friction are presented.

  • PDF

Iterative Analysis for Nonlinear Laminated Rectangular Plates by Finite Difference Method

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 2002
  • A new system of equations governing the nonlinear thin laminated plates with large deflections using von Karman equations is derived. The effects of transverse shear in the thin interlayer are included as part of the analysis. The finite difference method is used to perform the geometrically nonlinear behavior of the plate. The resultant equations permit the analysis of the effect of transverse shear stress deformation on the overall behavior of the interlayer using the load incremental method. For the purpose of feasibility and validity of this present method, the numerical results are compared with other available solutions for accuracy as well as efficiency. The solution techniques have been implemented and the numerical results of example problem are discussed and evaluated.

Vehicle/bridge interactions of a rail suspension bridge considering support movements

  • Yau, J.D.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.263-276
    • /
    • 2009
  • This paper is intended to investigate interaction response of a train running over a suspension bridge undergoing support settlements. The suspension bridge is modeled as a single-span suspended beam with hinged ends and the train as successive moving oscillators with identical properties. To conduct this dynamic problem with non-homogeneous boundary conditions, this study first divides the total response of the suspended beam into two parts: the static and dynamic responses. Then, the coupled equations of motion for the suspended beam carrying multiple moving oscillators are transformed into a set of nonlinearly coupled generalized equations by Galerkin's method, and solved using the Newmark method with an incremental-iterative procedure including the three phases: predictor, corrector, and equilibrium-checking. Numerical investigations demonstrate that the present iterative technique is available in dealing with the dynamic interaction problem of vehicle/bridge coupling system and that the differential movements of bridge supports will significantly affect the dynamic response of the running vehicles but insignificant influence on the bridge response.

Saw-tooth softening/stiffening - a stable computational procedure for RC structures

  • Rots, Jan G.;Invernizzi, Stefano;Belletti, Beatrice
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.213-233
    • /
    • 2006
  • Over the past years techniques for non-linear analysis have been enhanced significantly via improved solution procedures, extended finite element techniques and increased robustness of constitutive models. Nevertheless, problems remain, especially for real world structures of softening materials like concrete. The softening gives negative stiffness and risk of bifurcations due to multiple cracks that compete to survive. Incremental-iterative techniques have difficulties in selecting and handling the local peaks and snap-backs. In this contribution, an alternative method is proposed. The softening diagram of negative slope is replaced by a saw-tooth diagram of positive slopes. The incremental-iterative Newton method is replaced by a series of linear analyses using a special scaling technique with subsequent stiffness/strength reduction per critical element. It is shown that this event-by-event strategy is robust and reliable. First, the model is shown to be objective with respect to mesh refinement. Next, the example of a large-scale dog-bone specimen in direct tension is analyzed using an isotropic version of the saw-tooth model. The model is capable of automatically providing the snap-back response. Subsequently, the saw-tooth model is extended to include anisotropy for fixed crack directions to accommodate both tensile cracking and compression strut action for reinforced concrete. Three different reinforced concrete structures are analyzed, a tension-pull specimen, a slender beam and a slab. In all cases, the model naturally provides the local peaks and snap-backs associated with the subsequent development of primary cracks starting from the rebar. The secant saw-tooth stiffness is always positive and the analysis always 'converges'. Bifurcations are prevented due to the scaling technique.

Buckling Analysis of Axisymmetric Shells by Incremental Finite Element Mothod (증분형(增分形) 유한요소법(有限要素法)에 의한 축대칭(軸對稱) Shell구조(構造)의 좌굴해석(挫屈解析))

  • J.B.,Kim;C.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • This paper deals whth the buckling as well as postbuckling analysis of axisymmertric shells taking the initial deflection effects into account. Incremental equilibrium equations, based on the principle of virtual work, were derived by the finite element method, the successive step-by-step Newton-Raphson iterative technique was adopted. To define the transition pattern of postbuckling behavior from the prebuckling state more accurately, a simple solution method was developed, i.e. the critical load was calculated by the load extrapolation method with the determinant of tangent stiffness matrix and the equilibrium configuration in the immediate postbuckling stage was obtained by perturbation scheme and eigenvalue analysis. Degenerated isoparametric shell elements were used to analyse the axisymmetric shell of revolution. And by the method developed in this paper, the computer program applicable to the nonlinear analysis of both thin and moderately thick shells was constructed. To verify the capabilities and accuracies of the present solution method, the computed results were compared with the results of analytical solutions. These results coincided fairly well in both the small deflection and large deflection ranges. Various numerical analyses were done to show the effect of initial deflection and shape of shells on buckling load and postbuckling behavior. Futhermore, corrected directions of applied loads at every increment steps were used to determine the actual effects of large deflection in non-conservative load systems such as hydrostatic pressure load. The following conclusions can be obtained. (1) The method described in this paper was found to be both economic and effective in calculating buckling load and postbuckling behavior of shell structure. (2) Buckling and postbuckling behavior of spherical caps is critically dependent upon their geometric configuration, i.e. the shape of spherical cap and quantities of the initial deflection. (3) In the analysis of large deflection problems of shells by the incremental method, corrections of the applied load directions are needed at every incremental step to compensate the follower force effects.

  • PDF

A Study on the Evaluation Criterion and Method for the Assignment Results (수요예측결과의 평가기준 및 평가방법에 관한 연구)

  • 정천수
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.1
    • /
    • pp.25-42
    • /
    • 1994
  • The traffic forecast is one of the most important analysis objects in the urban transportation planning process. The results of traffic forecast are the most widely used informations and give a critical influence on the major decision makings in the transportation planning process. Thus, they should be as much accurate and credible data, and evaluated to determine whether they are enough reliable to directly use in the planning process. However, the evaluation process is usually overlooked or abbreviated with a few exceptions according to the size and character of the project. Even though a planner or engineer tries to evaluate the assignment results, he/she is usually faced with certain difficulties since there are no established criteria and methods for the accuracy evaluation. Accordingly, the main purpose of this research placed on establishing the criteria and methods for the accuracy evaluation of the assignment results. The secondary purpose was to evaluate which assignment technique produces the most accurate assignment results by applying the established evaluation criteria and methods to an actual network. The research found that the proposed evaluation methods well operated in testing the accuracy of assignment results with few limits on application. Also, the incremental assignment was found to provide the best assignment results of existing assignment techniques (Stochastic, Iterative, Incremental, Equilibrium assignment) for the Seoul city network applied.

  • PDF

An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling

  • Zou, Jin-Feng;Wei, Xing-Xing
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • This study focused on the mechanical and hydraulic characteristics of underwater tunnels based on Mohr-Coulomb (M-C), Hoek-Brown (H-B) and generalized H-B failure criteria. An improved approach for calculating stress, displacement and plastic radius of the circular tunnel considering hydraulic-mechanical coupling was developed. The innovation of this study was that the radius-incremental-approach was reconstructed (i.e., the whole plastic zone is divided into a finite number of concentric annuli by radius), stress and displacement of each annulus were determined in terms of numerical method and Terzaghi's effective stress principle. The validation of the proposed approach was conducted by comparing with the results in Brown and Bray (1982) and Park and Kim (2006). In addition, the Rp-pin curve (plastic radius-internal supporting pressure curve) was obtained using the numerical iterative method, and the plastic radius of the deep-buried tunnel could be obtained by interpolation method in terms of the known value of internal supporting pressure pin. Combining with the theories in Carranza and Fairhurst (2000), the improved technique for assessing the reliability of the tunnel support was proposed.

Incremental Image Noise Reduction in Coronary CT Angiography Using a Deep Learning-Based Technique with Iterative Reconstruction

  • Jung Hee Hong;Eun-Ah Park;Whal Lee;Chulkyun Ahn;Jong-Hyo Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.10
    • /
    • pp.1165-1177
    • /
    • 2020
  • Objective: To assess the feasibility of applying a deep learning-based denoising technique to coronary CT angiography (CCTA) along with iterative reconstruction for additional noise reduction. Materials and Methods: We retrospectively enrolled 82 consecutive patients (male:female = 60:22; mean age, 67.0 ± 10.8 years) who had undergone both CCTA and invasive coronary artery angiography from March 2017 to June 2018. All included patients underwent CCTA with iterative reconstruction (ADMIRE level 3, Siemens Healthineers). We developed a deep learning based denoising technique (ClariCT.AI, ClariPI), which was based on a modified U-net type convolutional neural net model designed to predict the possible occurrence of low-dose noise in the originals. Denoised images were obtained by subtracting the predicted noise from the originals. Image noise, CT attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were objectively calculated. The edge rise distance (ERD) was measured as an indicator of image sharpness. Two blinded readers subjectively graded the image quality using a 5-point scale. Diagnostic performance of the CCTA was evaluated based on the presence or absence of significant stenosis (≥ 50% lumen reduction). Results: Objective image qualities (original vs. denoised: image noise, 67.22 ± 25.74 vs. 52.64 ± 27.40; SNR [left main], 21.91 ± 6.38 vs. 30.35 ± 10.46; CNR [left main], 23.24 ± 6.52 vs. 31.93 ± 10.72; all p < 0.001) and subjective image quality (2.45 ± 0.62 vs. 3.65 ± 0.60, p < 0.001) improved significantly in the denoised images. The average ERDs of the denoised images were significantly smaller than those of originals (0.98 ± 0.08 vs. 0.09 ± 0.08, p < 0.001). With regard to diagnostic accuracy, no significant differences were observed among paired comparisons. Conclusion: Application of the deep learning technique along with iterative reconstruction can enhance the noise reduction performance with a significant improvement in objective and subjective image qualities of CCTA images.

Verifying Ontology Increments through Domain and Schema Independent Verbalization

  • Vidanage, Kaneeka;Noor, Noor Maizura Mohamad;Mohemad, Rosmayati;Bakar, Zuriana Aby
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2021
  • Collaborative ontology construction is the latest trend in developing ontologies. In this technique domain specialists and ontologists need to work together. Because of the complexity associated with ontology construction, it's done in an iterative and incremental fashion. After each iteration, an ontology increment will be produced. Current ontology increment is always an enhanced version of the previous increment. Each ontology increment has to be verified for its accuracy. Domain specialists' contribution is very significant in accomplishing this necessity. Unfortunately, non-computing domain specialists (i.e. medical doctors, bankers, lawyers) are illiterate on semantic concepts. Therefore, validating the accuracy of the ontology increment is a complex hurdle for them. This research proposes verbalization approach to address this complexity.