DOI QR코드

DOI QR Code

An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling

  • Zou, Jin-Feng (School of Civil Engineering, Central South University) ;
  • Wei, Xing-Xing (School of Civil Engineering, Central South University)
  • Received : 2017.04.13
  • Accepted : 2018.03.29
  • Published : 2018.09.20

Abstract

This study focused on the mechanical and hydraulic characteristics of underwater tunnels based on Mohr-Coulomb (M-C), Hoek-Brown (H-B) and generalized H-B failure criteria. An improved approach for calculating stress, displacement and plastic radius of the circular tunnel considering hydraulic-mechanical coupling was developed. The innovation of this study was that the radius-incremental-approach was reconstructed (i.e., the whole plastic zone is divided into a finite number of concentric annuli by radius), stress and displacement of each annulus were determined in terms of numerical method and Terzaghi's effective stress principle. The validation of the proposed approach was conducted by comparing with the results in Brown and Bray (1982) and Park and Kim (2006). In addition, the Rp-pin curve (plastic radius-internal supporting pressure curve) was obtained using the numerical iterative method, and the plastic radius of the deep-buried tunnel could be obtained by interpolation method in terms of the known value of internal supporting pressure pin. Combining with the theories in Carranza and Fairhurst (2000), the improved technique for assessing the reliability of the tunnel support was proposed.

Keywords

References

  1. Alonso, E., Alejano, L.R., Varas, F., Fdez-Manin, G. and Carranza-Torres, C. (2003), "Ground response curves for rock masses exhibiting strain-softening behaviour", J. Numer. Anal. Meth. Geomech., 27(13), 1153-1185. https://doi.org/10.1002/nag.315
  2. Antonio, B. (2016), "Deep tunnel in transversely anisotropic rock with groundwater flow", Rock Mech. Rock Eng., 49(12), 4817-4832. https://doi.org/10.1007/s00603-016-1118-6
  3. Apostolos, V. (2017), "A finite strain solution for the elastoplastic ground response curve in tunnelling: Rocks with non-linear failure envelopes", J. Numer. Anal. Meth. Geomech., 41(3), 1077-1090. https://doi.org/10.1002/nag.2665
  4. Boonchai, U., Kongkit, Y. and Suraparb, K. (2017), "Threedimensional undrained tunnel face stability in clay with a linearly increasing shear strength with depth", Comput. Geotech., 88(8), 146-151. https://doi.org/10.1016/j.compgeo.2017.03.013
  5. Brown, E.T. and Bray, J.W. (1982), "Rock-support interaction calculations for pressure shafts and tunnels", Proceedings of the International Symposium of the International Society for Rock Mechanics, Aachen, Germany.
  6. Carranza-Torres, C. and Fairhurst, C. (2000), "Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion", Tunn. Undergr. Sp. Technol., 15(2), 187-213. https://doi.org/10.1016/S0886-7798(00)00046-8
  7. Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014), "Three-dimensional numerical simulation for mechanized tunnelling in soft ground: The influence of the joint pattern", Acta Geotechnica, 9(4), 673-694. https://doi.org/10.1007/s11440-013-0279-7
  8. El-Tani, M. (2003), "Circular tunnel in a semi-infinite aquifer", Tunn. Undergr. Sp. Technol., 18(1), 49-55. https://doi.org/10.1016/S0886-7798(02)00102-5
  9. Fahimifar, A. and Zareifard, M.R. (2009), "A theoretical solution for analysis of tunnels below groundwater considering the hydraulic-mechanical coupling", Tunn. Undergr. Sp. Technol., 24(6), 634-646. https://doi.org/10.1016/j.tust.2009.06.002
  10. Fahimifar, A. and Zareifard, M.R. (2013), "A new closed-form solution for analysis of unlined pressure tunnels under seepage forces", J. Numer. Anal. Meth. Geomech., 37(11), 1591-1613. https://doi.org/10.1002/nag.2101
  11. Fahimifar, A. and Zareifard, M.R. (2014), "A new elasto-plastic solution for analysis of underwater tunnels considering straindependent permeability", Struct. Infrastruct. Eng., 10(11), 1432-1450. https://doi.org/10.1080/15732479.2013.824489
  12. Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2014), "The influence of seepage and gravitational loads on elastoplastic solution of circular tunnels", Scientia Iranica, 21(6), 1821-1832.
  13. Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015a), "An elasto-plastic model for underwater tunnels considering seepage body forces and strain-softening behavior", Eur. J. Environ. Civ. Eng., 19(2), 129-151. https://doi.org/10.1080/19648189.2014.939305
  14. Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015b), "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass", Geomech. Eng., 8(3), 323-359. https://doi.org/10.12989/gae.2015.8.3.323
  15. Huang, F., Zhao, L.H., Ling, T.H. and Yang, X.L. (2017), "Rock mass collapse mechanism of concealed karst cave beneath deep tunnel", J. Rock Mech. Min. Sci., 91(1), 133-138. https://doi.org/10.1016/j.ijrmms.2016.11.017
  16. Ieronymaki, E.S., Whittle, A.J. and Sureda, D.S. (2017), "Interpretation of free-field ground movements caused by mechanized tunnel construction", J. Geotech. Geoenviron. Eng., 143(4), 04016114. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001632
  17. Kolymbas, D. and Wagner, P. (2007), "Groundwater ingress to tunnels-the exact analytical solution", Tunn. Undergr. Sp. Technol., 22(1), 23-27. https://doi.org/10.1016/j.tust.2006.02.001
  18. Kyung, H.P., Adisorn, O. and Lee, J.G. (2008), "Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: A revisit", Tunn. Undergr. Sp. Technol., 23(2), 206-209. https://doi.org/10.1016/j.tust.2007.02.004
  19. Lee, S.W., Jung, J.W., Nam, S.W. and Lee, I.M. (2007), "The influence of seepage forces on ground reaction curve of circular opening", Tunn. Undergr. Sp. Technol., 22(1), 28-38. https://doi.org/10.1016/j.tust.2006.03.004
  20. Lee, Y.K. and Pietruszczak, S. (2008), "A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass", Tunn. Undergr. Sp. Technol., 23(5), 588-599. https://doi.org/10.1016/j.tust.2007.11.002
  21. Liu, C., Zhang, Z.X., Kwok, C.Y., Jiang, H.Q. and Teng, L. (2017), "Ground responses to tunneling in soft soil using the URUP method", J. Geotech. Geoenviron. Eng., 143(7), 04017023. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001695
  22. Ochmanski, M., Modoni, G. and Bzowka, J. (2015), "Numerical analysis of tunneling with jet-grouted canopy", Soil. Found., 55(5), 929-942. https://doi.org/10.1016/j.sandf.2015.08.002
  23. Pan, Q.J., Xu, J.S. and Dias, D. (2017), "Three-dimensional stability of a slope subjected to seepage forces", J. Geomech., 17(8), 04017035. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000913
  24. Park, K.H. and Kim, Y.J. (2006), "Analytical solution for a circular opening in an elastic-brittle-plastic rock", J. Rock Mech. Min. Sci., 43(4), 616-622. https://doi.org/10.1016/j.ijrmms.2005.11.004
  25. Rao, P.P., Chen, Q.S., Li, L., Nimbalkar, S. and Cui, J.F. (2017), "Elastoplastic solution for spherical cavity expansion in modified cam-clay soil under drained condition", J. Geomech., 17(8), 06017005. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000925
  26. Tang, X.W., Liu, W., Albers, B. and Savidis, S. (2014), "Upper bound analysis of tunnel face stability in layered soils", Acta Geotechnica, 9(4), 661-671. https://doi.org/10.1007/s11440-013-0256-1
  27. Vu, M.N., Broere, W. and Bosch, J.W. (2017), "Structural analysis for shallow tunnels in soft soils", J. Geomech., 17(8), 04017038. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000866
  28. Wan, M.S.P., Standing, J.R., Potts, D.M. and Burland, J.B. (2017), "Measured short-term ground surface response to EPBM tunnelling in London Clay", Geotechnique, 67(5), 420-445. https://doi.org/10.1680/jgeot.16.P.099
  29. Wang, H.N., Zeng, G.S., Utilic, S., Jiang, M.J. and Wu, L. (2017), "Analytical solutions of stresses and displacements for deeply buried twin tunnels in viscoelastic rock", J. Rock Mech. Min. Sci., 93(3), 13-29. https://doi.org/10.1016/j.ijrmms.2017.01.002
  30. Xiao, Y. and Liu, G.B. (2017a), "Performance of a large-scale metro interchange station excavation in Shanghai soft clay", J. Geotech. Geoenviron. Eng., 143(6), 05017003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001681
  31. Xiao, Y. and Liu, H. (2017), "Elastoplastic constitutive model for rockfill materials considering particle breakage", J. Geomech., 17(1), 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681
  32. Xiao, Y., Liu, H.L., Zhu, J.G. and Shi, W.C. (2012), "Modeling and behaviours of rockfill materials in three-dimensional stress space", Sci. Chin. Technol. Sci., 55(10), 2877-2892. https://doi.org/10.1007/s11431-012-4979-2
  33. Xiao, Y., Stuedlein, A.M., Chen, Q., Liu, H. and Liu, P. (2018), "Stress-strain-strength response and ductility of gravels improved by polyurethane foam adhesive", J. Geotech. Geoenviron. Eng., 144(2), 04017108. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001812
  34. Xiao, Y., Sun, Y., Yin, F., Liu, H. and Xiang, J. (2017b), "Constitutive modeling for transparent granular soils", J. Geomech., 17(7), 04016150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000857
  35. Yang, X.L. and Pan, Q.J. (2015), "Three dimensional seismic and static stability of rock slopes", Geomech. Eng., 8(1), 97-111. https://doi.org/10.12989/gae.2015.8.1.097
  36. Yang, X.L. and Yan, R.M. (2015), "Collapse mechanism for deep tunnel subjected to seepage force in layered soils", Geomech. Eng., 8(5), 741-756. https://doi.org/10.12989/gae.2015.8.5.741
  37. Zhang, D.M., Huang, H.W., Phoon, K.K. and Hu, Q. F. (2014), "A modified solution of radial subgrade modulus for a circular tunnel in elastic ground", Soil. Found., 54(2), 225-232. https://doi.org/10.1016/j.sandf.2014.02.012
  38. Zhang, J., Yang, F., Yang, J.S., Zheng, X.C. and Zeng, F.X. (2016), "Upper-bound stability analysis of dual unlined elliptical tunnels in cohesive-frictional soils", Comput. Geotech., 80(12), 283-289. https://doi.org/10.1016/j.compgeo.2016.08.023
  39. Zhang, Q., Zhang, C.H., Jiang, B.S., Li, N. and Wang, Y.C. (2018). "Elastoplastic coupling solution of circular openings in strainsoftening rock mass considering pressure-dependent effect", J. Geomech., 18(1), 04017132. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001043
  40. Zou, J.F. and Qian, Z.H. (2018), "Stability analysis of tunnel face below groundwater considering the coupled flow-deformation", J. Geomech., 18(8), 04018089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001199
  41. Zou, J.F. and Xia, M.Y. (2017), "A new approach for the cylindrical cavity expansion problem incorporating deformation dependent of intermediate principal stress", Geomech. Eng., 12(3), 347-360. https://doi.org/10.12989/gae.2017.12.3.347
  42. Zou, J.F. and Zou, S.Q. (2017), "Similarity solution for the synchronous grouting of shield tunnels under the nonaxisymmetric displacement boundary on vertical surface", Adv. Appl. Math. Mech., 9(1), 205-232. https://doi.org/10.4208/aamm.2016.m1479
  43. Zou, J.F., Chen, K.F. and Pan, Q.J. (2018), "An improved numerical approach of displacement and stress in strainsoftening surrounding rock incorporating rockbolt effectiveness and seepage force", Acta Geotechnica, 1-21.
  44. Zou, J.F., Xia, Z.Q. and Dan, H.C. (2016), "Theoretical solutions for displacement and stress of a circular opening reinforced by grouted rockbolt", Geomech. Eng., 11(3), 439-455. https://doi.org/10.12989/gae.2016.11.3.439