• Title/Summary/Keyword: increased surface area crystallization

Search Result 26, Processing Time 0.019 seconds

Effect of Ionic Liquid on Increased Surface Area Crystallization Process for Vancomycin (표면적이 증가된 반코마이신 결정화 공정에서 이온성 액체의 영향)

  • Kim, Sung-Jae;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.297-301
    • /
    • 2014
  • We examined the effect of ionic liquid on the crystallization efficiency of vancomycin in an increased surface area crystallization with silica gel. The crystallization efficiency was improved by the addition of ionic liquid, [BMIm][$BF_4$]. The addition of ionic liquid (20%, v/v) on the increased surface area crystallization with silica gel dramatically reduced the crystallization time by 6 folds (4 h), compared with the results of the case where the surface area-increasing material and ionic liquid had not been added. In addition, the crystal size of vancomycin was decreased and the crystal quality of vancomycin was improved by increasing the addition of ionic liquid.

The Reduction of Crystal Formation Time of Vancomycin Using Silica Gel (실리카겔을 이용한 반코마이신 결정화 시간 단축)

  • Kim, Sung-Jae;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.232-237
    • /
    • 2014
  • We investigated the effects of silica gels on the reduction of the crystallization time for the purification of vancomycin. The shortest crystallization time for vancomycin was obtained when silica gel with a pore diameter of $40-60{\AA}$ and with a particle diameter of 230-400 mesh was used as the material. The use of silica gel as a surface area increasing material dramatically reduced the crystallization time four fold (6 h) when compared with the results where the surface area had not been similarly increased. In addition, the crystal size of vancomycin was decreased with the addition of silica gel. This improved crystallization process has a significant effect on the convenience and feasibility of the purification step for vancomycin.

A Study on Recycling of Waste Oyster Shells as Seed Crystals in Phosphorous Crystallization Process (정석탈인공정의 정석재로써 폐굴껍질의 재활용에 관한 연구)

  • 김은호;성낙창;장성호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.133-138
    • /
    • 1997
  • The technology of removing phosphorous, considered as one of the most important control nutrients causing eutrophication in various water bodies, have been investigated by many researchers. Recently, phosphorous crystallization process is emerging as a new technology for phosphorous removal. In this study, waste oyster shells which can be easily obtained from the ocean, were used as a seed crystal, and their effects of several physical/chemical factors on the phosphorous removal efficiencies were examined by batch tests. Ca$^{2+}$ and pH affected phosphorous crystallization process using waste oyster shells. As alkalinity of wastewater increased, phosphorous removal efficiencies gradually decreased. Phosphorous removal efficiencies were increased, as specific area and contact efficiency per unit area of waste oyster shells were increased. In case of high temperature, phosphorous crystallization process was rapidly advanced and phosphorous removal efficiencies were increased. Dependig on X-ray diffraction analysis, it was showed that generation materials extracted from the surface of waste oyster shells with short reaction time were dominated by $CaHPO_4\cdot 2H_2O$, but progressed to $Ca_5(OH)(PO_4)_3$. The SEM observation reveals that the evident variations were hardly seen, but particle sizes of waste oyster shells were relatively bigger and showed forms of smaller plate than before.

  • PDF

Preparation of Porous Glasses by the Phase-separation of the Silicate Glass Containing $TiO_2$ ($TiO_2$를 함유한 규산염 유리의 상분리를 이용한 다공질 유리의 제조)

  • 김병훈;최석진;박태철
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • Microporous glasses in the system TiO2-SiO2-Al2O3-B2O3-CaO-Na2O were prepared by the phase-separation technique. Morphology and distribution of pore and specific surface area of glasses heated and leached out at various conditions were investigated by SEM and Porosimeter. Crystallization of glasses heated above transition temperature was also inspected by X-ray diffraction method. When the heating temperature and time increased, the pore size and volume increased, but the specific surface area decreased above the critical temperature. The phase-separation, specific surface area and pore size showed more sensitive change on the variation of heating temperature than of heating time. The specific surface area and micropore volume of porous glasses prepared in this study were about 120-330$m^2$/g and 0.001-0.01cc/g, respectively. Mean pore size of porous glasses were about 20-90$\AA$. Anatase phases was deposited when the parent glass was heat-treated at 75$0^{\circ}C$ for 6hrs.

  • PDF

Manufacture of Nano-Sized Ni-ferrite Powder from Waste Solution by Spray Pyrolysis Process (분무열분해 공정에 의한 폐액으로부터 니켈 페라이트 나노 분말 제조)

  • Yu Jae-Keun;Suh Sang-Kee;Kang Seong-Gu;Kim Jwa-Yeon;Park Si-Hyun;Park Yaung-Soo;Choi Jae-Ha;Sohn Jin-Gun
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.20-29
    • /
    • 2003
  • In order to efficiently recycle the waste solution resulting from shadow mask processing, nano-sized Ni-ferrite powder was fab-ricated through spray pyrolysis process. The average particle size of the powder was below 100nm. In this study, the effects of the reaction temperature. the concentration of raw material solution and the injection speed of solution on the properties of powder were respectively investigated. As the reaction temperature increased from $800^{\circ}C$ to $1100^{\circ}C$, average particle size of the powder significantly Increased and power structure became more solid, whereat its specific surface area was greatly reduced. Formation rate and crystallization of($NiFe_2$$O_4$) phale increased along with the temperature rise. As the concentrations of iron and nickel components in wastere solution increased, particle size of the powder became larger, particle size distribution became more irregular, and specific surface area was reduced. Formation rate and crystallization of $NiFe_2$$O_4$ phase increased significantly along with the increase of the concentration of solution. As the inlet speed of solution increased, particle size of the powder became larger, particle size distribution became wider, specific surface area was reduced and powder structure became less solid. As the inlet speed of solution decreased, formation rate and crystallization of $NiFe_2$$O_4$ phase significantly increased.

Collodial Properties and Acid Consuming Capacity of Hydrous Aluminum Oxide Suspension (제산제 알루미나수화물의 콜로이드성과 제산능)

  • 이계주;이기명
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 1991
  • Rheological, colloidal and micromeritical properties were followed to investigate aging mechanisms of hydrous aluminum oxide suspension using Zeta-meter systems, BET adsorption apparatus, Master sizer and electronmicroscope. The results indicate that hydrous aluminum oxide suspension revealed plastic flow with thixotropy. The viscosity, thixotropy and yield value were increased with increasing concentration. During aging process, the viscosity and thixotropic index were increased by an addition of glycerin, however, sorbitol stabilized aging process of the suspension being accompanied with growth of particle size and reduction in specific surface area, pore area and pore volume, and consistency. Diminution of adsorptive power of the particles was also protected by addition of sorbitol to hydrous aluminum oxide suspension. From these results, one of aging mechanism of hydrous aluminum oxide suspension assumed growth and/or crystallization of colloidal particles in aqueous suspension.

  • PDF

Effects of Crystallization and Seeding on Characteristics of Al2O3-ZrO2 Powder Prepared by a Sol-Gel Method (Sol-Gel법에 의한 Al2O3-ZrO2계 분말제조에 있어서 결정화 및 Seeding 효과)

  • 오한석;홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.373-379
    • /
    • 1988
  • $\alpha$-Al2O3-15m/o ZrO2 powder was prepared by a sol-gel method from boehmite and zirconium acetate. The transformation temperature of boehmite to $\alpha$-Al2O3 in the system Al2O3-ZrO2 was increased due to the coupled crystallization. On the other hand, the transformation temperature from boehmite to $\alpha$-Al2O3-15m/o ZrO2 could be prepared at 110$0^{\circ}C$ for 100min. The specific surface area of the product of $\alpha$-Al2O3-15m/o ZrO2 was 13.2$m^2$/g.

  • PDF

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property (열처리 시간에 따른 메조기공 타이타니아의 비표면적 향상 연구: 가스센싱 특성 변화)

  • Hong, M.-H.;Park, Ch.-S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.

Study on Dyeing Properties of Nylon 66 Nano Fiber (1) -Levelling Type Acid Dyes- (나일론 66 나노섬유의 염색성에 관한 연구(1) -균염성 산성염료-)

  • 이권선;이범수;박영환;김성동;김용민;오명준;정성훈
    • Textile Coloration and Finishing
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • In recent, development of nano fiber has been one of the most active subjects in the world. Nano fiber is defined as a ultra fine yarn with a diameter unit of $10-100\times10^{-9}meter$, which is possible to be produced by an electro-spinning technology. In this study, physical characteristics and dyeing properties of nylon 66 nano fiber were investigated. Nylon 66 nano fiber was dyed with levelling type acid dyes. X-ray diffraction method and DSC analysis were used for the measurement of the degree of crystallization. Analysis of amino end groups was also performed in order to examine a relationship between number of amino groups and its dyeing property as well as water absorption behavior. The maximum exhaustion % of dyes and dyeing rate under various dyeing conditions, such as dyeing temperature and pH in dye bath, along with build-up properties for 2 acid dyes were evaluated. It was found that the degree of crystallization of nano fiber was smaller than that of regular fiber, and amino end groups of nano fiber were less than regular fiber. Half dyeing time of nano fiber was shorter than regular fiber because of the bigger specific surface area. Effect of pH on exhaustion % was small in case of nano fiber. Exhaustion of nano fiber increased with higher concentration of dye.

Effect of Struvite Crystallization Kinetics; Seed Material, Seed Particle Size, $G{\cdot}t_d$ Value (Struvite 결정화에 미치는 영향; Seed 물질, Seed 입자크기, $G{\cdot}t_d$ Value의 영향)

  • Kim, Jin-Hyoung;Kim, Keum-Yong;Kim, Dae-Keun;Park, Hyoung-Soon;Lee, Sang-Cheol;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.207-212
    • /
    • 2008
  • This study focused on shorten the period of the struvite crystal birth and development by adding seed materials. For this purpose, three different seed materials were selected: sand, anthracite and struvite. The experiments has been conducted to evaluate the effect of the particle size of the selected seed material on the struvite crystallization, and to study the mixing effect which can be expressed by the value of $G{\cdot}t_d$(the multiple of mean velocity gradient(G) and mixing time($t_d$)). It was observed in this study that the removal efficiency of ammonia nitrogen increased by 9%, 11%, and 20% for sand, anthracite, and struvite added as the seed material, respectivley. This indicated that the struvite crystallization efficiency had a close correlation with the specific surface area of the seed particle. It was found that when struvite was selected as the seed material, the struvite crystallization proceeded at lower $G{\cdot}t_d$ value as compared with other seed materials. This observation implied that the secondary crystal birth would be dominated in this reaction. It was concluded in this study that the particle size was not significant factor on the struvite crystallization, while the $G{\cdot}t_d$ value was a considerably important factor in terms of the theory of the struvite crystal birth.