• Title/Summary/Keyword: incorporated impurities

Search Result 14, Processing Time 0.026 seconds

Influence of Incorporated Impurities on the Evolution of Microstructure in Electro-Deposited Copper Layer (혼입불순물이 구리 도금층의 미세조직변화에 미치는 영향)

  • Koo, Seok-Bon;Jeon, Jun-Mi;Lee, Chang-Myeon;Hur, Jin-Young;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.191-196
    • /
    • 2018
  • The self-annealing which leads evolution of microstructure in copper electroplating layers at room temperature occurs after forming deposition layer. During the process, crystal orientation, size and sheet resistance of plating layer change. Lastly, it causes the change of physical and mechanical characteristics such as a tensile strength of plating layer. In this study, the variation of incorporated impurities, microstructure and sheet resistance of copper plating layer formed by electroplating are measured with and without inorganic additives during the self-annealing. In case of absence of inorganic additives, the copper layer presents strong total intensity of incorporated impurities. During the self-annealing, such width of reduction was significant. Moreover, microstructure and crystal size are increased while the tensile strength is decreased noticeably. On the other hand, in the presence of inorganic additives, there is no observable distinction in the copper plating layer. According to the observation on movements of the incorporated impurities in electrodeposition copper layer, within 12 hours the impurities are continuously shifted from inside of the plating layer to its surface after as-deposited electroplating. Within 24 hours, except for the small portion of surface layer, it is considered that most of the microstructure is transformed.

The Observations of Water, Carbon Dioxide, Hydrgen, Nitrogen, Oxygen, Carbon Monoxide and Methane as Impurities in Natural Garnets (석류석의 불순물인 물, 이산화탄소, 수소, 질소, 산소, 일산화탄소 및 메탄의 고찰)

  • R. Everett Langford;A. A. Giardini;Charles E. Melton
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.353-356
    • /
    • 1973
  • A unique method of destructive analysis has been developed for the study of gaseous impurities in minerals. Samples are crushed in a high vacuum sample system of a research mass spectrometer. This is done by means of a suitably designed crusher which is incorporated in the inlet system of the instrument. Crusher elements are constructed of tungsten carbide. The mass spectrometer used for this preliminary study has a detection sensitivity of about $10^{-10}cc$at STP. In a study of rhodolite garnets obtained from near Lavonia, Georgia, U.S.A., the gases$H_2$, $O_2$, $H_{2}O$, $CO_2$, CO, and $CH_4$have been identified and their composition determined.

  • PDF

Spectroscopic Characterization of Phosphorus Doped HPHT Diamond (인이 첨가된 고온 . 고압 다이아몬드의 분광학적 특성)

  • Chung Jung In;Kim Hee-Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.291-297
    • /
    • 2004
  • Phosphorus is one of the interesting impurities in diamond, because it produces n-type semiconducting character. The character has been studied with spectroscopic methods as well as electric method, but most of the diamond used for these studies are conducted by the CVD (Chemical Vapor Deposition) diamond. In this study, we synthesized the phosphorus doped HPHT (High Pressure and High Temperature) diamond and investigated the characterization using CL spectroscopy to determine how phosphorus incorporated. As a result, the undocumented peaks of 248 and 603 nm as well as the reported peaks (239 nm, 240 ~ 270 nm) at the previous studies were observed. These luminescence peaks may be due to the complex defect of phosphorus with other impurities such as boron and nitrogen.

Research for High Quality Ingot Production in Large Diameter Continuous Czochralski Method (대구경 연속성장 초크랄스키법에서 고품질 잉곳 생산을 위한 연구)

  • Lee, Yu Ri;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.124-129
    • /
    • 2016
  • Recently industry has voiced a need for optimally designing the production process of low-cost, high-quality ingots by improving productivity and reducing production costs with the Czochralski process. Crystalline defect control is important for the production of high-quality ingots. Also oxygen is one of the most important impurities that influence crystalline defects in single crystals. Oxygen is dissolved into the silicon melt from the silica crucible and incorporated into the crystalline a far larger amount than other additives or impurities. Then it is eluted during the cooling process, there by causing various defect. Excessive quantities of oxygen degrade the quality of silicone. However an appropriate amount of oxygen can be beneficial. because it eliminates metallic impurities within the silicone. Therefore, when growing crystals, an attempt should be made not to eliminate oxygen, but to uniformly maintain its concentration. Thus, the control of oxygen concentration is essential for crystalline growth. At present, the control of oxygen concentration is actively being studied based on the interdependence of various factors such as crystal rotation, crucible rotation, argon flow, pressure, magnet position and magnetic strength. However for methods using a magnetic field, the initial investment and operating costs of the equipment affect the wafer pricing. Hence in this study simulations were performed with the purpose of producing low-cost, high-quality ingots through the development of a process to optimize oxygen concentration without the use of magnets and through the following. a process appropriate to the defect-free range was determined by regulating the pulling rate of the crystals.

The decay phenomenon of II-VI compound semiconductors (II-VI 화합반도체소자의 열화현상)

  • Young Kwon Sung
    • 전기의세계
    • /
    • v.17 no.2
    • /
    • pp.16-26
    • /
    • 1968
  • Cds is possible to add excess donors and to compensate partially using other group metals as acceptors. The impurities can ble incorporated either during crysta growth or by diffusion into a bulkcrystal. The addition of rimpurities leads also to the production of vacancies in a manner depending on the atmosphere surrounding the crystal during growth, during the diffusion process or using bulk. Cds of the mentioned above affects spectral sensitivity, speed of response, the variation on photocurrent, electron life time, and decay of photoconductivity with temperature and with intensity of illumination. In the work to be deseribed, these properties have been studied between liquid nitrogen and room temperature. In addition, the electron trap distribution has been correlated with speed of response, variation of photocurrent with temperature in various atmosphere. Four major trapping levels have been observed, and their identification with impurity and vacancy levels is discussed. And also the effects of lattice imperfections on the photoconductive properties CdS were investigated in detail.

  • PDF

STRUCTURAL ANALYSIS OF COPPER PHTHALOCYANINE THIN FILMS FABRICATED BY PLASMA-ACTIVATED EVAPORATION

  • Kim, Jun-Tae;Jang, Seong-Soo;Lee, Soon-Chil;Lee, Won-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.851-856
    • /
    • 1996
  • Copper Phthalocyanine (CuPc) thin films were fabricated on the silicon wafers by plasma activated evaporation method and structural analysis were carried out with various spectroscopies. The CuPc films had dense and smooth morphology and they also showed good mechanical properties and chemical resistance. The main molecular structure of the CuPc, which is the conjugated aromatic heterocyclic ring structure, was maintained even in the plasma process. However, metal-ligand (Cu-N) bands were deformed by the plasma process and the structure became amorphous especially at higher process pressures. Oxygen impurities were incorporated in the film and carboxyl functional groups were formed at the peripheral benzene ring. The structure and morphology of the films were dependent on the process pressure but relatively irrespective of the RF power.

  • PDF

Influence of Incorporated impurities in the Tensile strength of deposition layer during Electrodepositon copper plating (전기동도금시 도금층내 혼입불순물이 인장강도에 미치는 영향)

  • Gu, Seok-Bon;Lee, Hong-Gi;Heo, Jin-Yeong;Jeon, Jun-Mi;Lee, Chang-Myeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.264-264
    • /
    • 2015
  • 전기동도금의 경우 도금후 박막의 구조와 특성이 변화하는 단점이 있다. 공정조건 중 인가전류 밀도에 따른 우선결정성장방위, 미세조직, 혼입불순물 및 인장강도 변화를 조사하였다. 혼입불순물이 적은 저전류 밀도($2A/dm^2$)에서는 동도금후 시간이 지남에 따라 초기 인장강도를 유지하였으나, 고전류 밀도(5, $8A/dm^2$)로 갈수록 혼입불순물이 많아지며 동도금후 인장강도 또한 초기값에 비해 약 60%이상 감소하였다.

  • PDF

Effect of chemical treatment and variations of the physical properties of waste water-soluble cutting oil (폐 수용성 절삭유의 화학처리효과 및 물성변화)

  • Sin, Chun Hwan;Jang, Jeong Guk
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.403-412
    • /
    • 2004
  • Waste water-soluble cutting oil was treated with WI type #1 and WI type #2. The properties of the original water-soluble cutting oil were pH=l0.4, viscosity=1.4cP, CODcr=44,750 ppm, and TOC=10,569 ppm. However, the properties of the oil used for more than 3 months were changed to pH=7.82, viscosity=2.1cP, CODcr=151,000 ppm, and TOC=74,556 ppm. It might be attributed to the fact that molecular chains were cut due to thermal oxidation and impurities such as metal chips were incorporated in to the oil during the operation processes. To prevent the putrefaction of oil, the sterilization effect of ozone and UV on the microorganism in the oil was investigated. Ozone treatment showed that 99.99% of the microorganism was annihilated with 30 minutes contact time and 60 minutes were necessary for the same effect when UV was used. Ozone treatment could cut molecular chains of the oil due to strong sterilization power, which was evidenced by the increase of TOC from 25,132 ppm at instantaneous contact to 28,888 ppm at 30 minutes contact time. However, UV treatment didn't show severe changes in TOC values and thus, seemed to cause of severe cut of molecular chains. When the activated carbon was used to treat the waste water-soluble cutting oil, TOC decreased to 25,417 ppm with 0.lg carbon and to 15,946 ppm with 5.0g carbon. This results indicated that the waste oil of small molecular chains could be eliminated by adsorption. From the results, it could be concluded that these treatment techniques could be proposed to remove the waste oil of small molecular chains resulting in the degradation of the oil properties. In addition, these experimental results could be used for the correlation with future works such as investigation of the molecular distribution according to the sizes, lengths, and molecular weight of the chains.

Planarization of the Diamond Film Surface by Using the Hydrogen Plasma Etching with Carbon Diffusion Process (수소 플라즈마 에칭과 탄소 확산법에 의한 다이아몬드막 표면의 평탄화)

  • Kim, Sung-Hoon
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.351-356
    • /
    • 2001
  • Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 $^{\circ}C$ by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices.

  • PDF

Fabrication of a robust, transparent, and superhydrophobic soda-lime glass

  • Rahmawan, Yudi;Kwak, Moon-Kyu;Moon, Myoung-Woon;Lee, Kwang-Ryeol;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.86-86
    • /
    • 2010
  • Micro- and nanoscale texturing and control of surface energy have been considered for superhydrophobicity on polymer and silicon. However these surfaces have been reported to be difficult to meet the robustness and transparency requirements for further applications, from self cleaning windows to biochip technology. Here we provided a novel method to fabricate a nearly superhydrophobic soda-lime glass using two-step method. The first step involved wet etching process to fabricate micro-sale patterns on soda-lime glass. The second step involved application of $SiO_x$-incorporated DLC to generate high intrinsic contact angle on the surface using chemical vapor deposition (CVD) process. To investigate the effect of surface roughness, we used both positive and negative micro-scale patterns on soda-limeglass, which is relatively hard for surface texturing in comparison to quartz or Pyrex glasses due to the presence of impurities, but cheaper. For all samples we tested the static wetting angle and transparency before and after 100 cycles of wear test using woolen steel. The surface morphology is observed using optical and scanning electron microscope (SEM). The results shows that negative patterns had a greater wear resistance while the hydrophobicity was best achieved using positive patterns having static contact angle up to 140 deg. with about 80% transparency. The overall experiment shows that positive patterns at etching time of 1 min shows the optimum transparency and hydrophobicity. The optimization of micro-scale pattern to achieve a robust, transparent, superhydrophobic soda-lime glass will be further investigated in the future works.

  • PDF