• Title/Summary/Keyword: inclined surface

Search Result 385, Processing Time 0.034 seconds

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.

Amber Information Design for Supporting Safe-Driving Under Local Road in Small-scale Area (국지지역에서의 안전운전 지원을 위한 경보정보 설계)

  • Moon, Hak-Yong;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.38-48
    • /
    • 2010
  • Adverse weather (e.g. strong winds, snow and ice) will probably appear as a more serious and frequent threat to road traffic than in clear climate. Another consequence of climate change with a natural disastrous on road traffic is respond to traffic accident more the large and high-rise bridge zone, tunnel zone, inclined plane zone and de-icing zone than any other zone, which in turn calls for continuous adaption of monitoring procedures. Accident mitigating measures against this accident category may consist of intense winter maintenance, the use of road weather information systems for data collection and early warnings, road surveillance and traffic control. While hazard from reduced road friction due to snow and ice may be eliminated by snow removal and de-icing measures, the effect of strong winds on road traffic are not easily avoided. The purpose of the study described here, was to design of amber information the relationship between traffic safety, weather, user information on road weather and driving conditions in local-scale Geographic. The most applications are the optimization of the amber information definition, improvements to road surveillance, road weather monitoring and improved accuracy of user information delivery. Also, statistics on wind gust, surface condition, vehicle category and other relevant parameters for wind induced accidents provide basis for traffic control, early warning policies and driver education for improved road safety at bad weather-exposed locations.

Fracture strength of zirconia ceramic crowns according to tooth position (치아 부위에 따른 지르코니아 도재관의 파절강도)

  • Lee, In-Seob;Kim, Jeong-Mi;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia ceramic crowns according to tooth position. Material and methods: After 10 metal dies were made for each group, the zirconia ceramic crowns were fabricated using CAD/CAM system ($Lava^{TM}$ All-Ceramic System) and each crown was cemented on each metal die with resin cement (Rely $X^{TM}$ Unicem). The cemented zirconia ceramic crowns mounted on the testing jig were inclined with 30 degrees to the long axis of the tooth and the universal testing machine was used to measure the fracture strength. Results: 1. The fracture strength of the zirconia ceramic crown in the lower 1st molar (2963 N) had the highest and that in the lower central incisor (1035 N) had the lowest. 2. The fracture strength of zirconia ceramic crown was higher than that of the IPS Empress crowns in all tooth position. 3. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the long axis of the crowns. 4. There were no significant differences on the fracture strength of the zirconia ceramic crowns according to tooth position except in premolar group. Conclusion: Within the limitations of this study, the results suggested that strength of zirconia ceramic crown is satisfactory for clinical use.

Effect of Canopy Reforming on Light Penetration into Crop Community and Yielding in Corn (옥수수 초형교정이 군락 투광성 및 수량성에 미치는 영향)

  • 이호진;조명제;이홍석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.1
    • /
    • pp.76-83
    • /
    • 1985
  • A hypothesis that artificial reforming of corn canopy could improve solar light penetration and dry matter production was tested in corn fields (var. Suwon 19) with three planting densities; low (60 ${\times}$ 40cm), medium (60 ${\times}$ 24cm) and high (60 ${\times}$ 16cm). Natural canopy was found that leaf orientations were even over all azimuth but somewhat inclined toward north-south direction and leaf angle ranged 38$^{\circ}$ to 71$^{\circ}$ from horizontal surface. Reforming corn canopy included following treatments: 1) natural canopy planted in north-south rows (natural canopy), 2)east-west plane canopy planted in north-south rows (E-W canopy), 3)east-west plane canopy and upright leaves in north-south rows, 4)north-south plane canopy (N-S canopy) in east-west rows. After corn plots were installed with training system by supporting poles and connecting wires, corn leaves were induced to a reforming direction and tied on wire. Average light intensity at the mid-point of plant height showed 5-10% increases in E-W canopy and in E-W canopy plus upright leaves, but a 2-10% decrease in N-S canopy from natural canopy. At yellow ripe stage, total dry wt. was increased in E-W canopy but not in N-S canopy. The E-W canopy produced 3-10% more grain yield than natural canopy. Though E-W canopy plus upright leaves yielded less at low density, it yielded up to 10% more at higher density. The N-S canopy yielded similar to low compared with natural canopy. These results suggests that reforming canopy toward solar incident direction increases light penetration into lower canopy, photosynthetic efficiency and grain yield, especially at high planting density in corn.

  • PDF

Effect of Model Resolution on The Flow Structures Near Mesoscale Eddies (수치모델 해상도가 중규모 와동 근처의 난류구조에 미치는 영향)

  • Chang, Yeon S.;Ahn, Kyungmo;Park, Young-Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.79-93
    • /
    • 2015
  • Three-dimensional structures of large ocean rings in the Gulf Stream region are investigated using the HYbrid Coordinate Ocean Model (HYCOM). Numerically simulated flow structures around four selected cyclonic and anticyclonic rings are compared with two different horizontal resolutions: $1/12^{\circ}$ and $1/48^{\circ}$. The vertical distributions of Lagrangian Coherent Structures (LCSs) are analyzed using Finite Size Lyapunov Exponent (FSLE) and Okubo-Weiss parameters (OW). Curtain-shaped FSLE ridges are found in all four rings with extensions of surface ridges throughout the water columns, indicating that horizontal stirring is dominant over vertical motions. Near the high-resolution rings, many small-scale flow structures with size O(1~10) km are observed while these features are rarely found near the low-resolution rings. These small-scale structures affect the flow pattern around the rings as flow particles move more randomly in the high-resolution models. The dispersion rates are also affected by these small-scale structures as the relative horizontal dispersion coefficients are larger for the high-resolution models. The absolute vertical dispersion rates are, however, lower for the high-resolution models, because the particles tend to move along inclined eddy orbits when the resolution is low and this increases the magnitude of absolute vertical dispersion. Since relative vertical dispersion can reduce this effect from the orbital trajectories of particles, it gives a more reasonable magnitude range than absolute dispersion, and so is recommended in estimating vertical dispersion rates.

The Development of the Simple SHGC Calculation Method in Case of a Exterior Venetian Blind Using the Simulation (시뮬레이션을 이용한 외부 베네시안 블라인드의 약식 SHGC 계산법 개발)

  • Eom, Jae-Yong;Lee, Chung-Kook;Jang, Weol-Sang;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.73-83
    • /
    • 2015
  • When it comes to these buildings for business use, cooling load during summertime was reported to have great importance which, as a result, impressively increased interest in Solar Heat Gain Coefficient (SHGC). Such SHGC is considered to be lowered with the help of colors and functions of glass itself, internal shading devices, insulation films and others but basically, these external shading devices for initial blocking that would not allow solar heat to come in from outside the buildings are determined to be most effective. Of many different external shading devices, this thesis conducted an analysis on Exterior Venetian Blind. As for vertical shading devices, previous researches already calculated SHGC conveniently using concepts of sky-opening ratios. However in terms of the Venetian Blind, such correlation is not possibly applied. In light of that, in order to extract a valid correlation, this study first introduced a concept called shape factor, which would use the breadth and a space of a shade, before carrying out the analysis. As a consequence, the concept helped this study to find a very similar correlation. Results of the analysis are summarized as follows. (1) Regarding SHGC depending on the surface reflectance of a shade, an average of 2% error is observed and yet, the figure can always be ignored when it comes to a simple calculation. (2) As for SHGC of each bearing, this study noticed deviations of 4% or less and in the end, it is confirmed that extraction can be achieved with no more than one correlation formula. (3) When only the shape factor and nothing else is used for finding a correlation formula, the formula with a deviation of approximately 5% or less is what one would expect. (4) Since the study observed slight differences in bearings depending on ranges of the shape factors, it needed to extract a weighted value of each bearing, and learned that the smaller the shape factor, the wider the range of a weighted value. The study now suggests that a follow-up research to extract a simple calculation formula by dealing with all these various inclined angles of shade, solar radiation conditions of each region (the ratio of diffuse radiation to direct radiation and others) as well as seasonal features should be carried out.

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

Crossplot Interpretation of Electrical Resistivity and Seismic Velocity Values for Mapping Weak Zones in Levees (제방의 취약구간 파악을 위한 전기비저항과 탄성파속도의 교차출력 해석)

  • Cho, Kyoung-Seo;Kim, Jeong-In;Kim, Jong-Woo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.507-522
    • /
    • 2021
  • Specific survey objectives often cannot be met using only one geophysical method, as each method's results are influenced by the specific physical properties of subsurface materials. In particular, areas susceptible to geological hazards require investigation using more than one method in order to reduce risks to life and property. Instead of analyzing the results from each method separately, this work develops a four-quadrant criterion for classifying areas of levees as safe or weak. The assessment is based on statistically determined thresholds of seismic velocity (P-wave velocity from seismic refraction and S-wave velocity from multichannel analysis of surface waves) and electrical resistivity. Thresholds are determined by subtracting the standard deviation from the mean during performance testing of this correlation technique applied to model data of four horizontal and inclined fracture zones. Compared with results from the crossplot of resistivity and P-wave velocity, crossplot analysis using resistivity and S-wave velocity data provides more reliable information on the soil type, ground stiffness, and lithological characteristics of the levee system. A loose and sandy zone (represented by low S-wave velocity and high resistivity) falling within the second quadrant is interpreted to be a weak zone. This interpretation is well supported by the N values from standard penetrating test for the central core.

A Study on Morphology and Size of Clinical Crown of Permanent Maxillary Molar in Korean Adult (한국 성인의 상악 대구치 임상치관의 형태와 크기에 관한 연구)

  • Cha, Kwon-Sil;Oh, Sang-Chun;Dong, Jin-Keum
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.2
    • /
    • pp.79-92
    • /
    • 2000
  • The purpose of this study was to estimate the morphology and the size of permanent maxillary molar in Korean Adult. The 100 dental college students with a normal dentition and without any dental prosthesis and severe caries were selected for this study. The subjects were taken impression to make study model. On the study model, authour three times measured those sizes and estimated morphological structures with a calipers, a Boley gauge and a protractor. The results were as follows; 1. In the maxilary first molar's clinical crown height, mesiolingual cusp height was 6.34mm, mesiobuccal cusp height was 6.05mm, distobuccal cusp height was 5.20mm. And in the maxillary second molar's clinical crown height, mesiobuccal cusp height was 5.85mm, mesiolingual cusp height was 5.71mm, distobuccal cusp height was 5.51mm, distolingual cusp height was 3.53mm. This result considered that the maxillary first molar inclined to distobuccal, and the maxillary second molar more upright than the maxillary first molar. 2. In the width of clinical crown, the maxillary first molar was 10.43mm, the maxillary second molar was 10.20mm, and the difference between the first molar's width and the second molar's width was 0.23mm. 3. The crown thickness was measured divided into mesial buccolingual half and distal buccolingual half. The mesial buccolingual half was 11.14mm, and distal buccolingual half was 10.35mm in the maxillary first molar, and in the maxilary second molar, mesial buccolingual half was 11.25mm, and distal buccolingual half was 9.72mm. This result considered that height of convergency located in mesial half of crown. 4. In the buccal groove length, total length and ratio, the maxillary first molar was 52.5%, the maxillary second molar was 50%. And the development of buccal groove in the maxillary first molar was 59% in case of the well developed buccal groove and 41% in case of the weak developed one. And frequency of buccal pit of the maxillary first molar was 12.5%. Whereas, the frequency of buccal of the well developed buccal groove in the maxillary second molar was 37% and that of the weak developed one was 63%. And frequency of buccal pit of the maxillary second molar was not seen. 5. The 3 cusp type tooth cannot be found in the maxillary first molar and the frequency of 3 cusp type tooth in the maxillary second molar was as small as 6% 6. In the case of 4 cusp type tooth, the size of distal lingual cusp molar was difference between in the maxillary first molar and in the maxillary second molar by about 1mm. 7. The intercuspal distance was similar in the maxillary first premolar and second molar. And intercuspal distanc of mesial half of the maxillary first molar and the maxillary second molar was silmillar, too. 8. The an measurement of occlusal surface in 4 cusp type tooth showed that the angle of occlusal surface between the distobuccal and mesiolingual was an obtuse angle, and the angle of occlusal surface between mesiobuccal and distolingual was an acute angle in the both cases of maxillary first and second molar. 9. The measurements of the development of Carabelli cusp showed that the frequency of the well developed one was 7% and that of the weak developed one was 56% in the maxillary first molar. And there cannot be found the well developed one and can be found 2.5% only in the case of the weak developed one in the maxillary second molar. 10. The well developed oblique ridge in the maxillary first molar showed the 100% frequency and that in the maxillary second molar showed the 85.5% frequency. The frequency of mesiomarginal ridge tubercle in the maxillary first molar was 82% and that in the maxillary second molar was 30.5%. And the frequency of distal accessory tubercle in the maxillary first molar can be seen about 19% and that in the maxillary second molar can be seen about 12%.

  • PDF

Effect of thread design on the marginal bone stresses around dental implant (임플란트 나사산 디자인이 변연골 응력에 미치는 영향)

  • Lee, Sang-Hyun;Jo, Kwang-Heon;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.316-323
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effect of different thread designs on the marginal bone stresses around dental implant. Materials and methods: Standard ITI implant(ITI Dental Implant System; Straumann AG, Waldenburg, Switzerland), 4.1 mm in diameter and 10 mm in length, was selected as control. Test implants of four different thread patterns were created based on control implant, i.e. maintaining all geometrical design of control implant except thread pattern. Four thread designs used in test implants include (1) small V-shape screw (model A), (2) large V-shape screw (model B), (3) buttress screw (model C), and (4) trapezoid screw (model D). Surface area for unit length of implant was 14.4 $mm^2$ (control), 21.7 (small V-shape screw), 20.6 (large V-shape screw), 17.0 (buttress screw) and 28.7 $mm^2$ (trapezoid screw). Finite element models of implant/bone complex were created using an axisymmetric scheme with the use of NISA II/DISPLAY III (Engineering Mechanics Research Corporation, Troy, MI, USA). A load of 100 N applied to the central node on the crown top either in parallel direction or at 30 degree to the implant axis (in order to apply non-axial load to the implant NKTP type 34 element was employed). Quantification and comparison of the peak stress in the marginal bone of each implant model was made using a series of regression analyses based on the stress data calculated at the 5 reference points which were set at 0.2, 0.4, 0.6, 0.8 and 1.0 mm from implant wall on the marginal bone surface. Results: Results showed that although severe stress concentration on the marginal bone cannot be avoided a substantial reduction in the peak stress is achievable using different thread design. The peak marginal bone stresses under vertical loading condition were 7.84, 6.45, 5.96, 6.85, 5.39 MPa for control and model A, B, C and D, respectively. And 29.18, 26.45, 25.12, 27.37, 23.58 MPa when subject to inclined loading. Conclusion: It was concluded that the thread design is an important influential factor to the marginal bone stresses.