• Title/Summary/Keyword: inclined columns

Search Result 21, Processing Time 0.029 seconds

Possibility for Heliotropism from Inclined Columns of Stromatolites, Socheong Island, Korea

  • Kong, Dal-Yong;Lee, Seong-Joo
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.381-392
    • /
    • 2013
  • Socheong island is a unique island containing Precambrian stromatolites in South Korea. Most of Socheong stromatolites are domes and columns, occurring as 10 cm to 1 m thick stromatolite beds. Lower parts of the stromatolite beds are predominantly composed of domes, but columns increase toward the upper level of stromatolite beds. In many of the stromatolite beds, inclined columns are easily identifiable, which is generally considered as a result of heliotropism. From general lithology, sedimentary structures, inclined angles and distributional pattern, and structural deformation of sedimentary rocks of Socheong island, the inclination of Socheong stromatolites could be better interpreted as a secondary structural deformation probably after formation of stromatolite columns, rather than as a result of heliotropism. However, at this moment, we do not clearly reject heliotropism interpretation for inclined columns of Socheong stromatolites. This is because the original position of stromatolite columns could have been lost if structural deformation had affected the whole sedimentary rocks of Socheong island.

Buckling behavior of bundled inclined columns: Experimental study and design code verification

  • Moussa Leblouba;Samer Barakat;Raghad Awad;Saif Uddin Al-Khaled;Abdulrahman Metawa;Abdul Saboor Karzad
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.183-197
    • /
    • 2024
  • Not all structural columns maintain a vertical orientation. Several contemporary building structures have inclined columns, introducing distinct challenges, particularly in buckling behavior. This study examines the buckling behavior of inclined, thin-walled steel bundled columns, differing from typical vertical columns. Using specimens with three tubes welded to plates linearly aligned at the top and triangularly at the bottom, tests indicated that buckling capacity increases with tube wall thickness and diameter but decreases with column height. Inclined tubes in bundled columns showed improved buckling resistance over vertical ones. Results were verified against standard steel design guidelines to assess their predictive accuracy.

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.

Relocation of plastic hinge in exterior beam-column joints using inclined bars

  • P.Asha;R.Sundararajan;K.Kumar
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.317-329
    • /
    • 2024
  • Recent earthquakes have demonstrated that even when the beams and columns in a reinforced concrete frame remain intact, the integrity of the whole structure is undermined if the joint where these members connect fails. A good seismic performance of reinforced concrete frames depends on their ability to absorb seismic energy through inelastic deformations and to avoid a sudden development of collapse mechanism in event of a strong earthquake shaking. The primary objective of this investigation is to move the plastic hinge away from the beam-column joint region and hence reducing the damage to the joint region. In this research, the seismic performance of exterior beam-column joints with four types of confinement in joint region and inclined bars from column to beam is investigated experimentally. Control specimens without inclined bars and four types of confinement Square Hoop, Square Spiral, Circular Hoop and Circular Spiral were tested along with inclined bars were tested. Seismic performance was determined via load-deflection response, ductility, stiffness, energy dissipation, strain of beam reinforcement and crack pattern. Out of the four specimens with inclined bars, seismic performance of joint with Square Spiral confinement gave the best performance in terms of all parameters.

Axial compressive behavior of concrete-filled steel tube columns with stiffeners

  • Liang, Wei;Dong, Jiangfeng;Wang, Qingyuan
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • In order to reduce the deformation and delay the local buckling of concrete filled steel tube (CFST) columns, strengthening the structures with stiffeners is an effective method. In this paper, a new stiffening method with inclined stiffeners was used to investigate the behaviors of short CFST columns under axial compression. Besides, a three-dimensional nonlinear finite element (FE) model was applied to simulate the mechanical performances, including the total deformation, local buckling, and stress-strain relationship. Revised constitutive models of stiffened steel tube and confined concrete are proposed. A good agreement was achieved between the test and FE results. Furthermore, the calculated results of load capacity by using a simplified method also show a good correlation with experimental data.

Performance Evaluation of Steel Moment Frame and Connection including Inclined Column (경사기둥을 포함한 철골모멘트 골조 및 접합부의 성능평가)

  • Kim, Yong-Wan;Kim, Taejin;Kim, Jongho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.173-182
    • /
    • 2013
  • The building design projects which are being proceeded nowadays pursue a complex and various shape of structures, escaping from the traditional and regular shape of buildings. In this new trend of the architecture, there rises a demand of the research in the structural engineering for the effective realization of such complex-shaped buildings which disassembles the orthogonality of frames. As a distinguished characteristics of the buildings in a complex-shape, there frequently are inclined columns included in the structural frame. The inclined column causes extra axial force and bending moment at the beam-column connection so it is necessary to assess those effects on the structural behavior of the frame and the connection by experiment or analysis. However, with comparing to the studies on the normal beam-column connections, the inclined column connections have not been studied sufficiently. Therefore, this study evaluated the beam-column connections having an inclined column using nonlinear and finite element analysis method. In this paper, steel moment frames having inclined columns were analyzed by the nonlinear pushover analysis to check the global behavior and beam-column connection models were analyzed by the finite element analysis to check the buckling behavior and the fracture potentials.

TORANOMON HILLS - Super High-Rise Building on Urban Highway -

  • Hitomi, Yasuyoshi;Takahashi, Hiroshi;Karasaki, Hidenori
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.167-171
    • /
    • 2014
  • TORANOMON HILLS is the main building of a large-scale re-development project located in the center of Tokyo. This high-rise building has a height of 247 m and 52 floors above ground, 5 floors below ground, and $62m{\times}80m$ in plan. It is used as hotel, residential facilities, offices, shops and conference facilities. The super structure is mainly a rigid steel frame with response-control devices, using concrete-filled steel tube columns. The underground section is a mixed structure composed of steel, steel-reinforced concrete and reinforced concrete framings. The piled-raft foundation type is used. The remarkable feature of this high-rise building is that the motorway runs through the basements of the building, which makes it stand just above the motorway. This condition is an important factor of the building design. The plan shape is designed to fit along the curve of the motorway. Special columns at the corners are required to avoid placing columns in the motorway. This special column is a single inclined column in the lower floors that branches into two columns in the mid-floors to suit the column location in the upper floors. The cast steel joint is used for the branching point of each special column to securely transfer the stress.

Evaluation of Fire Resistance Using Mechanical Properties at High Temperature for Steel Column Made of Rolled Steels (SS 400) (구조용 압연강(SS 400)의 고온 기계적 특성을 이용한 기둥부재의 내화성능 평가)

  • Kwon, In-Kyu;Shin, Soon-Gi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.671-677
    • /
    • 2011
  • Steel columns used in steel buildings are inclined to lose their strength when exposed to severe fire conditions, so fire resistance is required in most countries to protect against loss of life and building collapses. In Korea, the fire resistance of columns can be obtained by the fire test defined in KS F 2257-1, 7. The fire resistance of a steel column should be evaluated in terms of the column's conditions, such as various section types (H-section, hollow-section), the column's length and boundary conditions, and whether it is fixed or hinged. However, fire testing of steel columns is usually conducted on one standard-sized H-section over 3,000 mm, and the result is used as the column's fire resistance. This is not a reasonable way to ensure that a building can withstand fire conditions. In this study, to evaluate the possibility of calculating the fire resistance of steel columns with material properties of high tensile strength of SS 400, both load-bearing fire tests and calculation of steel temperatures were carried out. The results of temperature calculation were very similar to those obtained by fire test.

Seismic resistance and mechanical behaviour of exterior beam-column joints with crossed inclined bars

  • Bakir, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.493-517
    • /
    • 2003
  • Attempts at improving beam-column joint performance has resulted in non-conventional ways of reinforcement such as the use of the crossed inclined bars in the joint area. Despite the wide accumulation of test data, the influence of the crossed inclined bars on the shear strength of the cyclically loaded exterior beam-column joints has not yet been quantified and incorporated into code recommendations. In this study, the investigation of joints has been pursued on two different fronts. In the first approach, the parameters that influence the behaviour of the cyclically loaded beam-column joints are investigated. Several parametric studies are carried out to explore the shear resisting mechanisms of cyclically loaded beam-column joints using an experimental database consisting of a large number of joint tests. In the second approach, the mechanical behaviour of joints is investigated and the equations for the principal tensile strain and the average shear stress are derived from joint mechanics. It is apparent that the predictions of these two approaches agree well with each other. A design equation that predicts the shear strength of the cyclically loaded exterior beam-column joints is proposed. The design equation proposed has three major differences from the previously suggested design equations. First, the influence of the bond conditions on the joint shear strength is considered. Second, the equation takes the influence of the shear transfer mechanisms of the crossed inclined bars into account and, third, the equation is applicable on joints with high concrete cylinder strength. The proposed equation is compared with the predictions of the other design equations. It is apparent that the proposed design equation predicts the joint shear strength accurately and is an improvement on the existing code recommendations.

Distortional buckling formulae for cold-formed steel rack-section members

  • Silvestre, N.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.49-75
    • /
    • 2004
  • The paper derives, validates and illustrates the application of GBT-based formulae to estimate distortional critical lengths and bifurcation stress resultants in cold-formed steel rack-section columns, beams and beam-columns with arbitrarily inclined mid-stiffeners and four support conditions. After a brief review of the Generalised Beam Theory (GBT) basics, the main concepts and procedures employed to obtain the formulae are addressed. Then, the GBT-based estimates are compared with exact results and, when possible, also with values yielded by formulae due to Lau and Hancock, Hancock and Teng et al. A few remarks on novel aspects of the rack-section beam-column distortional buckling behaviour, unveiled by the GBT-based approach, are also included.