• Title/Summary/Keyword: in-vehicle network system

Search Result 787, Processing Time 0.032 seconds

Hardware-in-the-Loop Simulation of a Vehicle-to-Vehicle Distance Control System (차간거리제어 Hardware-in-the-Loop 시뮬레이션)

  • Moon, Il-Ki;Lee, Chan-Kyu;Yi, Kyong-Su;Kwon, Young-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.741-746
    • /
    • 2001
  • This paper presents an investigation of a vehicle-to-vehicle distance control using a Hardware-in-the-Loop Simulation(HiLS) system. Since vehicle tests are costly and time consuming, how to establish a efficient and low cost development tool is an important issue. The HiLS system consists of a stepper motor, an electronic vacuum booster, a controller unit and two computers which are used to form real time simulation and to save vehicle parameters and signals of actuator through a CAN(Controller Area Network). Adoption of a CAN for communication is a trend in the automotive industry. Since this environment is the same as that of a real vehicle, a distance control logic verified in laboratory can be easily transfered to a test vehicle.

  • PDF

Sub-Optimal Route Planning by Immuno-Agents

  • Takakazu, Ishimatsu;Chan, Tony
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.89.6-89
    • /
    • 2001
  • In Vehicle Information and Communication System (VICS), which is an active field of Intelligent Transport System (ITS), information of traffic congestion is sent to each vehicle at real time. However, a centralized navigation system is not realistic to guide millions of vehicles in a megalopolis. Autonomous distributed systems should be more flexible and scalable, and also have a chance to focus on each vehicle´s demand. This paper proposes a sub-optimal route planning mechanism of vehicles in urban areas using the non-network type immune system. Simulation is carried out using a cellular automaton model. This system announces a sub-optimal route to drivers in real time using VICS.

  • PDF

A Design of a Method for Determining Direction of Moving Vehicle using Image Information (영상정보를 이용한 차량 이동 방향 결정 기법의 설계)

  • Moon, Hye-Young;Kim, Jin-Deog;Yu, Yun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.95-97
    • /
    • 2010
  • Recently, CAN network technology and MOST network are introduced in vehicle to control many electronic devices and to provide entertainment service. Many interconnected devices operate in MOST network which has ring topology such as CD-ROM(DVD), AMP, VIDEO CAMERA, VIDEO DISPLAY, GPS NAVIGATION and so on. In this paper, The input image of CAMERA in the MOST network is used for determining the movement direction of vehicle. Even though the position information was received from GPS, it is difficult to directly determine the direction of moving vehicle in certain areas such as the parallel road structure. This paper designs and implements the method to determine vehicle's direction by real-time matching between CAMERA image and object image base on image DB.

  • PDF

A Design of Framework for Interworking between Heterogeneous Vehicle Networks (이기종 차량 네트워크간의 연동을 위한 프레임워크 설계)

  • Yun, Sangdu;Kim, Jindeog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.219-222
    • /
    • 2009
  • Recently, as the techniques of vehicle and communication have improve, the techniques of in- vehicle network that is a essential part of ITS have been focused. In-vehicle networks, however, are not unified to single network. The networks are composed of several local networks because of communication speed, cost and efficiency. It is important to communicate information between the networks. Therefore, the complexity of network design for communication increases. To solve this problem, local networks need a framework for interworking between heterogeneous networks. In this paper, a framework interworking between in-vehicle networks is proposed.

  • PDF

Vehicle Maintenance Support System using CAN Communication (CAN 통신을 이용한 자동차 유지관리 지원 시스템)

  • Jiwon, Park;Seunghong, Han;Jaehyun, Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.59-68
    • /
    • 2022
  • We propose the vehicle maintenance support system to alarm consumable replacement reminders to the vehicle owner. Since the delayed replacement of the consumables makes the condition of the vehicle worse, it is crucial to replace consumables in a recommended period. The vehicle maintenance support system alarms the replacement time, which is set by the vehicle owner, based on the mileage of the installed vehicle. It integrates speed information acquired from the Controller Area Network interface for communication between Electronic Control Unit and instrument panel, exposed at the On Board Diagnostics-II port, to calculate the vehicle mileage. By this, there is no additional wiring required for the system. We verify the system has only 0.28% error by comparing the mileage on the system with the instrument cluster on the vehicle. It automatically enters low-power mode consuming 15mW, which is a negligible amount for the typical conditions of the car, to prevent the vehicle battery from discharging when the ignition is off.

Case Study on the continuous pickup and delivery vehicle routing problem in Multi-level Logistic Network based on S automobile Part Logistics Process (다단계 물류 네트워크에서 A/S 부품 집화 및 배송이 연속적으로 발생하는 문제에 관한 사례연구 -자동차 부품 물류 프로세스를 중심으로-)

  • Song, Jun-Woo;Kim, Kyung-Sup;Jeong, Suk-Jae
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.193-204
    • /
    • 2013
  • The growing logistics strategy of a company is to optimize their vehicle route scheduling in their supply chain system. It is very important to analyze for continuous pickups and delivery vehicle scheduling. This paper is a computational study to investigate the effectiveness of continuous pickups and delivery vehicle routing problems. These scheduling problems have 3 subproblems; Inbound Vehicle Routing Problem with Makespan and Pickup, Line-haul Network Problem, and Outbound Vehicle Routing Problem with Delivery. In this paper, we propose 5 heuristic Algorithms; Selecting Routing Node, Routing Scheduling, Determining Vehicle Type with Number and Quantity, and Modification Selecting Routing Node. We apply these Algorithms to S vehicle company. The results of computational experiments demonstrate that proposed methods perform well and have better solutions than other methods considering the basic time and due-date.

Fault Detection of Propeller of an Overactuated Unmanned Surface Vehicle based on Convolutional Neural Network (합성곱신경망을 활용한 과구동기 시스템을 가지는 소형 무인선의 추진기 고장 감지)

  • Baek, Seung-dae;Woo, Joo-hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.125-133
    • /
    • 2022
  • This paper proposes a fault detection method for a Unmanned Surface Vehicle (USV) with overactuated system. Current status information for fault detection is expressed as a scalogram image. The scalogram image is obtained by wavelet-transforming the USV's control input and sensor information. The fault detection scheme is based on Convolutional Neural Network (CNN) algorithm. The previously generated scalogram data was transferred learning to GoogLeNet algorithm. The data are generated as scalogram images in real time, and fault is detected through a learning model. The result of fault detection is very robust and highly accurate.

Design for System Architecture of Multiple AVPs with Fail-safe based on Dynamic Network (Fail-safe를 적용한 다수 AVP 차량 및 아키텍처 설계)

  • Woo, Hoon-Je;Kim, Jae-Hwan;Sung, Kyung-Bok;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.584-593
    • /
    • 2012
  • This paper introduces an AVP (Automated Valet Parking) system which applies an autonomous driving concept into the current PAS (Parking Assistant System). The present commercial PAS technology is limited into vehicle. It means vehicle only senses and controls by and for itself to assist the parking. Therefore, the present PAS is restricted to simple parking events. But AVP includes wider parking events and planning because it uses infra-sensor network as well as vehicle sensor. For the realization of AVP, the commercial steering system of a compact vehicle was modified into steer-by-wire structure and various sensors like LRF (Long Range Finder) and camera were installed in a parking area. And local & global server decides where and when the vehicle can go and park in the testing area after recognized the status of environment and vehicle from those sensors. GPS solution was used to validate the AVP performance. More various parking situations, vehicles and obstacles will be considered in the next research stages based on these results. And we expect this AVP solution with more intelligent vehicles can be applied in a big parking lot like a market, an amusement park, etc.

An Implementation of Monitoring System of Vehicle Using CAN Communication and Embedded System (Controller Area Network (CAN) 통신과 임베디드 시스템을 이용한 자동차 감시 시스템 구현)

  • Yang, Seung-Hyun;Lee, Seok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2690-2692
    • /
    • 2005
  • CAN communication can minimize the interfacing lines between equipments because it is composed of only the input and output lines, also is used for automatic system including vehicle, aircraft, railway vehicles and robot because the reliability of data is high by the capability of data-related error detect and correcting function. It can also improve the low-reliable and inefficient system which is composed of the existing Wiring Harness(W/H), so in case of vehicle, it is used in place of the present ECU as the new electro-control unit. In this paper, we constructed the electro-control unit of vehicle by using CAN communication and implemented system that could monitor the condition of vehicle through the web or mobile by connecting the electro-control unit to imbedded system. Such a system is expected to be helpful to the intelligent vehicle and the adoption of ACC(Adaptive Cruise Control).

  • PDF

ECU-In-the-Loop Simulation for ESC Performance Analysis on the Selection of In-vehicle Networks (차량 내 네트워크 선정에 따른 ESC 성능 분석을 위한 ECU-In-the-Loop 시뮬레이션)

  • Yang, Seung-Moon;Kim, Seong-Yeop;Ki, Young-Hun;Ahn, Hyun-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.87-96
    • /
    • 2013
  • This paper shows how the performance of an ESC(Electronic Stability Control) system can be affected by the selection of in-vehicle network protocols such as CAN or FlexRay. The vehicle control performance under ESC operation is analyzed by EILS(ECU-In-the-Loop Simulation). The experimental set-up for the EILS of the ESC system consists of two 32-bit microcontroller boards communicated with CAN or FlexRay protocols. A 7-DOF vehicle model and an ESC algorithm with 2-DOF reference vehicle model are implemented on each microcontroller respectively. It is shown by experimental results that the ESC system using the FlexRay protocol can achieve better performance than that using the CAN protocol for a fast and accurate lane changing.