• Title/Summary/Keyword: in-situ removal

Search Result 216, Processing Time 0.025 seconds

Optimization of nutrients requirements for bioremediation of spent-engine oil contaminated soils

  • Ogbeh, Gabriel O.;Tsokar, Titus O.;Salifu, Emmanuel
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.484-494
    • /
    • 2019
  • This paper presents a preliminary investigation of the optimum nutrients combination required for bioremediation of spent-engine oil contaminated soil using Box-Behnken-Design. Three levels of cow-manure, poultry-manure and inorganic nitrogen-phosphorus-potassium (NPK) fertilizer were used as independent biostimulants variables; while reduction in total petroleum hydrocarbon (TPH) and total soil porosity (TSP) response as dependent variables were monitored under 6-week incubation. Ex-situ data generated in assessing the degree of biodegradation in the soil were used to develop second-order quadratic regression models for both TPH and TSP. The two models were found to be highly significant and good predictors of the response fate of TPH-removal and TSP-improvement, as indicated by their coefficients of determination: $R^2=0.9982$ and $R^2=1.000$ at $p{\leq}0.05$, respectively. Validation of the models showed that there was no significant difference between the predicted and observed values of TPH-removal and TSP-improvement. Using numerical technique, the optimum values of the biostimulants required to achieve a predicted maximum TPH-removal and TSP-improvement of 67.20 and 53.42%-dry-weight per kg of the contaminated soil were as follows: cow-manure - 125.0 g, poultry-manure - 100.0 g and NPK-fertilizer - 10.5 g. The observed values at this optimum point were 66.92 and 52.65%-dry-weight as TPH-removal and TSP-improvement, respectively.

혐기성 SBR을 이용한 anammox 미생물 배양 및 fluorescence in situ hybridization (FISH)을 통 미생물 군집 분석

  • Han, Dong-U;Yun, Ho-Jun;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.286-289
    • /
    • 2001
  • Anaerobic ammonium oxidation with nitrite to $N_2$(anammox) is a recently discovered microbial reaction with interesting potential for nitrogen removal from wastewater. Here we investigated the microbial community structure in the sequencing batch reactor(SBR) with an anammox activity. The SBR was optimized for the enrichment of a very slowly growing microbial community and showed that possibility of anaerobic ammonium oxidation. Fluorescence in situ hybridization(FISH) analysis revealed that anaerobic ammonium oxidizers were Candidatus Brocadia anammoxidans and Candidatus Kuenenia stuttgartiensis. Furthermore, Nitrosomol1as spp. of the ${\beta}$ -subclass of Proteobacteria was also present within the anaerobic SBR microorganisms.

  • PDF

디젤 오염토양에서 화학적 산화에 의한 PAH 분해특성 및 PAH 분해미생물의 거동

  • 정해룡;안영희;김인수;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.22-25
    • /
    • 2002
  • The effect of in-situ chemical oxidation on the indigenous soil microorganisms (total microbes and PAH-degrading microbes) and contaminant removal were investigated. Field soil contaminated with diesel in gas station was collected and the soil was treated from 0 to 900 minutes by in-situ ozonation as chemical remediation. The treated soil samples were incubated with supplying oxygen during the 9 weeks to understand the characteristics of microbes regrowth, damaged by ozone. The sharp decrease of aromatic fraction and TPH was observed within 60 minutes of ozone application and aromatic fraction and TPH then slowly decreased. The phenanthren-degrading bacteria were the most sensitive to ozonation, because 1 hour of ozonation reduced the microbes from 10$^{6}$ CFU/g-soil to below detection limits.

  • PDF

Removal of Dissolved Heavy Metals through Biosorption onto Indigenous Bacterial Biofilm Developed in Soil (토양 내 토착 미생물에 의한 바이오필름 형성과 흡착을 통한 용존 중금속 제거)

  • Kim, Sang-Ho;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.435-444
    • /
    • 2009
  • In situ stabilization of heavy metals through adsorption onto indigenous bacterial biofilm developed on soil particles was investigated. Biofilms were developed in soil columns by supply of various carbon sources such as acetate, lactate and glucose. During development of biofilms, acetate, lactate, and glucose solutions were flew out from the soil columns with volume ratios of 98.5%, 97.3%, and 94.7%, respectively, when compared with soil column supplied with deionized water. Decrease in effluent amounts through the soil columns amended with carbon sources over time indicated the formation of biofilms resulting in decrease of soil porosity. Solutions of Cd, Cr(VI), Cu, Pb, and Zn were injected into the biofilms supported on soil particles in the columns, and the dissolved heavy metals in effluents were determined. Concentrations of dissolved Cd, Cr(VI), Cu, and Zn in the effluents through biofilm columns were lower than those of control column supplied with deionized water. The result was likely due to enhanced adsorption of the metals onto biofilms. Efficiency of metal removal by biofilms depended on the type of carbon sources supplied. The enhanced removal of dissolved heavy metals by bacterial biofilms in this study may be effectively applied to technical development of in situ stabilization of heavy metals in natural soil formation contaminated with heavy metals.

Piggery Waste Treatment using Partial Nitritation and Anaerobic Ammonium Oxidation (부분질산화와 혐기성 암모늄산화를 이용한 돈사폐수처리)

  • Hwang, In-Su;Min, Kyung-Sok;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.599-604
    • /
    • 2006
  • Nitrogen removal with the combined SHARON (Single reactor system for high ammonium removal over nitrite)ANAMMOX (Anaerobic ammonium oxidation) process using the effluent of ADEPT (Anaerobic digestion elutriated phased treatment) slurry reactor with very low C/N ratio for piggery waste treatment was investigated. For the preceding SHARON reactor, ammonium nitrogen loading and removal rate were $0.97kg\;NH_4-N/m^3_{reactor}/day$ and $0.68kg\;NH_4-N/m^3_{reactor}/day$ respectively. In steady state, bicarbonate alkalinity consumption for ammonium nitrogen converted to $NO_2-N$ or $NO_3-N$ was 8.4 gram per gram ammonium nitrogen. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. The loading and removal rate of the soluble nitrogen defined as the sum total of $NH_4-N$, $NO_2-N$ and $NO_3-N$ in ANAMMOX reactor were $1.36kg\;soluble\;N/m^3_{reactor}/day$ and $0.7kg\;soluble\;N/m^3_{reactor}/day$, respectively. The average $NO_2-N/NH_4-N$ removal ratio by ANAMMOX was 2.41. Fluorescence in situ hybridization (FISH) analysis verified that Candidatus Kuenenia stuttgartiensis were dominate, which means that they played an important role of nitrogen removal in ANAMMOX reactor.

유류오염토양 복원을 위한 지중 오존산화기술의 현장규모 적용

  • 정해룡;손규동;최희철;김수곤;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.172-175
    • /
    • 2003
  • Field scale application of in-situ ozonation were carried out for remediation of variably saturated soils contaminated with diesel fuel with 3 dimensional test cell (3m$\times$2m$\times$2m). After 20 days of ozone injection, more than 90% of removal rate was observed through the 3-D test cell. This result might be caused by uniform distribution, relatively low oxidant demand, and low water content of soils, as well as high oxidation potential of ozone. However, less than 50 % of injected ozone was monitored through the 3-D test cell even after 20 days of injection.

  • PDF

In-situ Methane Enrichment System Coupled with External $CO_2$ Stripper in Mesophilic Anaerobic Digestion (중온혐기성소화조에서 외부 $CO_2$ Stripping을 이용한 In-situ 고순도 메탄회수 공정 개발)

  • Kang, Ho;Jeong, Ji-Hyun;Lim, Seon-Ae;Lee, Hye-Mi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.155-161
    • /
    • 2012
  • A simple in-situ methane enrichment system in mesophilic anaerobic digestion was developed to take advantage of the differing solubilities of $CO_2$ and methane. The methane enhancement systems consisted of low solids plug-flow maize digester coupled with a leachate recycle loop to an external $CO_2$ stripper. The effects of leachate recycle rate (LRR) and reactor alkalinity on the resulting offgas $CH_4$ contents, biogas productivity and TVS removal efficiency were quantitively evaluated. The results showed that offgas $CH_4$ contents of over 94% was achieved at 3 volume of leachate recycle per volume of reactor per day (3 v/v-d) and at the reactor alkalinity of 4 g/L as $CaCO_3$, as the optimum operating conditions. The TVS removal efficiency of the methane enhancement system was 79% which corresponds to 94% of the control reactor and the methane productivity appeared to be 0.71 v/v-d. Offgas methane contents correlated well with LRR. However excessively high LRR led to the decrease in TVS removal efficiency.

Ultrasonic flushing 기법에 의한 유류오염토양의 복원에 관한 실험연구

  • Jeong, Ha-Ik;Oh, In-Gyu;Kim, Sang-Geun;Lee, Yong-Su;Yoo, Jun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.13-17
    • /
    • 2002
  • Ultrasonic waves have several mechanical, chemical, and biological effects on a saturated soil medium. Their mechanical effects, popularly known as cavitation. Cavitation is the rapid and repeated formation, and resulting implosion, of imcrobubbles in a liquid, resulting in the propagation of microscopic shock waves. In a soil-liquid system, their mechanical effects generate high differntial fluid-particle velocities and microscopic shock waves. The velocity perturbations are capable of dislodging oil in the system by overcoming the forces binding oil to sand particles. In this study, a series of laboratory experiments involving the simple flushing and ultrasonic flushing were carried out. An increase in permeability and oil removal rate were observed in ultrasonic flushing tests. Some practical implications of these results are discussed in terms of technical feasibility of in situ implementation of ultrasonics.

  • PDF

초음파동전기세척 복합기법에 의한 오염부지 복원기술

  • 정하익;김상근;송봉준;강동우;이경국
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.183-185
    • /
    • 2004
  • In this study, the combined electrokinetic and ultrasonic remediation technique, ultrasonically enhanced electrokinetic technique, was studied for the removal of heavy metal and organic substance in contaminated soils. The electrokinetic technique has been applied to remove mainly the heavy metal and the ultrasonic technique has been to remove mainly organic substance in contaminated soil. The laboratory soil flushing tests combined electrokinetic and ultrasonic technique were conducted using specially designed and fabricated devices to determine the effect of these both techniques. A series of laboratory experiments involving the simple, electrokinetic, ultrasonic, and electrokinetic & ultrasonic flushing test were carried out. A soil admixed with sand and kaolin was used as a test specimen, and Pb and ethylene glycol were used as contaminants of heavy metal and organic substance. An increase in out flow, permeability and contaminant removal rate was observed in electrokinetic and ultrasonic flushing tests. Some practical implications of these results are discussed in terms of technical feasibility of in situ implementation of electrokinetic ultrasonic remediation technique.

  • PDF

Removal of Methyl tert-Butyl Ether (MTBE) by Modified Fenton Process for in-situ Remediation (Methyl tert-Butyl Ether(MTBE)의 in-situ Remediation을 위한 Modified Fenton Process에 관한 연구)

  • Chung, Young-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • A recent study showed that MTBE can be degraded by Fenton's Reagent (FR). The treatment of MTBE with FR, however, has a definite limitation of extremely low pH requirement (optimum pH $3{\sim}4$) that makes the process impracticable under neutral pH condition on which the ferrous ion precipitate forming salt with hydroxyl anion, which result in the diminishment of the Fenton reaction and incompatible with biological treatment. Consequently, this process using only FR is not suitable for in-situ remediation of MTBE. In order to overcome this limitation, modified Fenton process using NTA, oxalate, and acetate as chelating reagents was introduced into this study. Modified Fenton reaction, available at near neutral pH, has been researched for the purpose of obtaining high performance of oxidation efficiency with stabilized ferrous or ferric ion by chelating agent. In the MTBE degradation experiment with modified Fenton reaction, it was observed that this reaction was influenced by some factors such as concentrations of ferric ion, hydrogen peroxide, and each chelating agent and pH. Six potential chelators including oxalate, succinate, acetate, citrate, NTA, and EDTA were tested to identify an appropriate chelator. Among them, oxalate, acetate, and NTA were selected based on their remediation efficiency and biodegradability of each chelator. Using NTA, the best result was obtained, showing more than 99.9% of MTBE degradation after 30 min at pH 7; the initial concentration of hydrogen peroxide, NTA, and ferric ion were 1470 mM, 6 mM, and 2 mM, respectively. Under the same experimental condition, the removal of MTBE using oxalate and acetate were 91.3% and 75.8%, respectively. Optimum concentration of iron ion were 3 mM using oxalate which showed the greatest removal efficiency. In case of acetate, $[MTBE]_0$ decreased gradually when concentration of iron ion increased above 5 mM. In this research, it was showed that modified Fenton reaction is proper for in-situ remediation of MTBE with great efficiency and the application of chelatimg agents, such as NTA, was able to make the ferric ion stable even at near neutral pH. In consequence, the outcomes of this study clearly showed that the modified Fenton process successfully coped with the limitation of the low pH requirement. Furthermore, the introduction of low molecular weight organic acids makes the process more available since these compounds have distinguishable biodegradability and it may be able to use natural iron mineral as catalyst for in situ remediation, so as to produce hydroxyl radical without the additional injection of ferric ion.