Removal of Dissolved Heavy Metals through Biosorption onto Indigenous Bacterial Biofilm Developed in Soil

토양 내 토착 미생물에 의한 바이오필름 형성과 흡착을 통한 용존 중금속 제거

  • Kim, Sang-Ho (STX Energy Co. Ltd, STX Namsan Tower) ;
  • Chon, Hyo-Taek (Department of Energy Resources Engineering, Seoul National University) ;
  • Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnam National University)
  • Published : 2009.10.28

Abstract

In situ stabilization of heavy metals through adsorption onto indigenous bacterial biofilm developed on soil particles was investigated. Biofilms were developed in soil columns by supply of various carbon sources such as acetate, lactate and glucose. During development of biofilms, acetate, lactate, and glucose solutions were flew out from the soil columns with volume ratios of 98.5%, 97.3%, and 94.7%, respectively, when compared with soil column supplied with deionized water. Decrease in effluent amounts through the soil columns amended with carbon sources over time indicated the formation of biofilms resulting in decrease of soil porosity. Solutions of Cd, Cr(VI), Cu, Pb, and Zn were injected into the biofilms supported on soil particles in the columns, and the dissolved heavy metals in effluents were determined. Concentrations of dissolved Cd, Cr(VI), Cu, and Zn in the effluents through biofilm columns were lower than those of control column supplied with deionized water. The result was likely due to enhanced adsorption of the metals onto biofilms. Efficiency of metal removal by biofilms depended on the type of carbon sources supplied. The enhanced removal of dissolved heavy metals by bacterial biofilms in this study may be effectively applied to technical development of in situ stabilization of heavy metals in natural soil formation contaminated with heavy metals.

토양 입자 표면에 형성한 토착 미생물 바이오필름에 의하여 중금속을 흡착하므로써 하부 생태계로 이동하지 않고 원위치에 고정화하는 실험을 수행하였다. 토양으로 충진한 컬럼에 초산염, 유산염, 포도당 등의 탄소원을 10일간 공급함으로써 토양에 바이오필름을 형성하였다. 바이오필름 형성 기간 중, 초산염, 유산염, 포도당을 공급한 컬럼의 유출 수량은 탈이온수를 공급한 컬럼의 유출수량에 비하여 각각 98.5%, 97.3%, 94.7%인 것으로 나타났다. 이러한 유출수량의 감소는 형성된 바이오필름에 의한 토양 공극 폐색에 의한 것으로 판단된다. 바이오필름이 형성된 토양 컬럼에 Cd, Cr(VI), Cu, Pb, Zn 용액을 주입하며 시간에 따라 유출수를 채집, 중금속을 정량하였다. 바이오필름 컬럼을 통과하여 나온 유출수 중 Cd, Cr(VI), Cu, Zn 농도는 탈이온수 컬럼에 비하여 낮았으며, 이는 토양 입자에 비하여 바이오필름에 의한 이들 중금속 흡착 효율이 높기 때문인 것으로 여겨진다. 바이오필름에 의한 중금속 제거 효율은 토착 미생물에 공급한 탄소원의 종류에 따라 다르게 나타났다. 이러한 연구 결과는 중금속으로 오염된 토양 내에 중금속을 원위치 고정화하는 기술 개발에 유용하게 적용될 수 있을 것으로 기대한다.

Keywords

References

  1. 환경부 (2002) 토양오염공정시험방법. 환경부고시 제2002-122호
  2. Aksu, Z. (2001) Equilibrium and kinetic modelling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature. Separation and Purification Technol., v.3, p.285-294 https://doi.org/10.1016/S1383-5866(00)00212-4
  3. Alloway, B.J. (1995) Heavy metals in in soils, 2nd ed. Chapman and Hall, 368p
  4. Andres, Y., Thouand, G., Boualam, M. and Mergeay, M. (2000) Factors influencing the biosorption of gadolinium by micro-organisms and its mobilisation from sand. Appl. Microbiol. Biotechnol., v.54, p.262-267 https://doi.org/10.1007/s002530000368
  5. Beveridge, T.J. and Murray, R.G.E. (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol., v.141, p.876-887
  6. Ceribasi, I.H. and Yetis, U. (2001) Biosorption of Ni(II) and Pb(II) by Phanerochaete chrysosporium from a binary metal system - kinetics. Water SA, v.27, p.15-20
  7. Cordoba, A., Vargas, P. and Dussan, J. (2008) Chromate reduction by Arthrobacter CR47 in biofilm packed bed reactors. J. Haz. Mater., v.151, p.274-279 https://doi.org/10.1016/j.jhazmat.2007.10.072
  8. Costerton, J.W., Lewandowski, Z., DeBeer, D., Caldwell, D., Korber, D. and James, G. (1994) Biofilms, the customized microniche. J. Bacteriol., v.176, p.2137-2142
  9. Davidson, C.M., Thomas, R.P., McVey, S.E., Perala, R., Littlejohn, D. and Ure, A.M. (1994) Evaluation of sequential extraction procedure for the speciation of heavy metal in sediments. Anal. Chimica. Acta, v.291, p.277-286 https://doi.org/10.1016/0003-2670(94)80023-5
  10. Hiebert, R. (1998) Using biological barriers to control movement of contaminated groundwater; Subsurface barrier technologies. International Business Communications
  11. Klimmek, S., Stan, H.-J., Wilke, A., Bunke, G. and Buchholz, R. (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ. Sci. Technol., v.35, p.4283-4288 https://doi.org/10.1021/es010063x
  12. Kloke, A. (1979) Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soil, UN-ECE Symp, 325p
  13. Langley, S. and Beveridge, T.J. (1999) Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm. Can. J. Microbiol., v.45, p.616-622 https://doi.org/10.1139/cjm-45-7-616
  14. Lee, J.-U. and Beveridge, T.J. (2001) Interaction between iron and Pseudomonas aeruginosa biofilms attached to Sepharose surfaces. Chem. Geol., v.180, p.67-80 https://doi.org/10.1016/S0009-2541(01)00306-0
  15. Lovely, D.R. and Coates, J.D. (1997) Bioremediation of metal contamination. Curr. Opin. Biotechnol., v.8, p.285-289 https://doi.org/10.1016/S0958-1669(97)80005-5
  16. Quintelas, C., Rocha, Z., Silva, B., Fonseca, B., Figueiredo, H. and Tavares, T. (2009) Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng. J., v.149, p.319-324 https://doi.org/10.1016/j.cej.2008.11.025
  17. Trudinger, P.A. and Swaine, D.J. (Eds.) (1979) Biogeochemical cycling of mineral-forming elements. Elsevier Science Ltd., p.293-314
  18. Valls, M. and de Lorenzo, V. (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev., v.26, p.327-338 https://doi.org/10.1016/S0168-6445(02)00114-6
  19. Vecchio, A., Finoli, C., Di Simine, D. and Andreoni, V. (1998) Heavy metal biosorption by bacterial cells. Fresenius J. Anal. Chem., v.361, p.338-342 https://doi.org/10.1007/s002160050899
  20. Volesky, B. (1990) Biosorption and biosorbents. In Volesky, B. (Ed.) Biosorption of heavy metals, Boca Raton, CRC Press, p.3-6
  21. Welch, S.A. and Ullman, W.J. (1993) The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim. Cosmochim. Acta, v.57, p.2725-2736 https://doi.org/10.1016/0016-7037(93)90386-B