• 제목/요약/키워드: in-situ observation

검색결과 274건 처리시간 0.02초

In-situ Crack Propagation Observation of a Particle Reinforced Polymer Composite Using the Double Cleavage Drilled Compression Specimens

  • Lee Yeon-Soo;Yoon Young-Ki;Jeong Bo-Young;Yoon Hi-Seak
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.310-318
    • /
    • 2006
  • In this study, we investigate the feasibility of in-situ crack propagation by using a double cleavage drilled compression (DCDC) specimen showing a slow crack velocity down to 0.03 mm/s under 0.01 mm/s of displacement control. Finite element analysis predicted that the DCDC specimens would show at least 4.3 fold delayed crack initiation time than conventional tensile fracture specimens under a constant loading speed. Using DCDC specimens, we were able to observe the in-situ crack propagation process in a particle reinforced transparent polymer composite. Our results confirmed that the DCDC specimen would be a good candidate for the in-situ observation of the behavior of particle reinforced composites with slow crack velocity, such as the self-healing process of micro-particle reinforced composites.

토네이도 현장관측: TOTO 대(對) DOROTHY (In-Situ Observation of Tornado: TOTO vs. DOROTHY)

  • 박선기
    • 대기
    • /
    • 제14권2호
    • /
    • pp.7-10
    • /
    • 2004
  • A short review on TOTO (TOtable Tornado Observatory), one of the earliest in-situ observing systems for tornado, is provided. TOTO was outfitted with sensors for measuring wind, pressure and humidity, and storm researchers, in mid-1980's, tried to put it inside tornadoes for detailed studies on tornado, but failed. However, the accumulated knowledge and experience with TOTO lead to a successful field program in mid-1990's. A story about DOROTHY, a parody of TO TO in the movie "Twister!", is also provided.

원전 고온 1차수 환경에서 응력부식균열의 실시간 마이크로 스케일 관찰 방법 개발 (Development of Method for In-situ Micro-Scale Observation of Stress Corrosion Cracking in High-Temperature Primary Water Environment)

  • 신정호;이종연;김성우
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.265-272
    • /
    • 2023
  • The aim of this study was to develop a new in-situ observation method and instrument in micro-scale to investigate the mechanism of stress corrosion cracking (SCC) initiation of Ni-base alloys in a high temperature water environment of pressurized water reactors (PWRs). A laser confocal microscope (LCM), an autoclave with diamond window view port, and a slow strain-rate tester with primary water circulation loop system were components of the instrument. Diamond window, one of the core components of the instrument, was selected based on its optical, chemical, and mechanical properties. LCM was used to observe the specimen in micro-scale, considering the experimental condition of a high-temperature primary water environment. Using in-situ method and instrument, it is possible to observe oxidation and deformation of specimen surface in micro-scale through the diamond window in a high-temperature primary water in real-time. The in-situ method and instrument developed in this work can be utilized to investigate effects of various factors on SCC initiation in a high-temperature water environment.

미끄럼반복마찰의 직접관찰에 의한 TiN피막의 허용응력에 관한 연구 (A Study on the Allowable Stress of TiN Coating During Repeated Sliding Condition by In-situ System)

  • 문봉호
    • Tribology and Lubricants
    • /
    • 제27권3호
    • /
    • pp.147-155
    • /
    • 2011
  • The ceramic coatings are excellent materials of cutting tools and sliding parts. To evaluate the wear characteristics of very thin ceramic coated layer, it is very important to investigate its wear process microscopically. An effective method for investigating the wear of a thin layer is the observation of wear process in microscopic detail using in-situ system. In this study, using the SEM Tribosystem as in-situ system, the microscopic wear mode of TiN coatings was investigated in repeated sliding. As results, four modes were observed for TiN coatings: Ploughing, powder formation, flake formation and coating delimitation. The observation of the microscopic wear by in-situ system can clarify the allowable stress of TiN coating.

X-ray 실시간 관찰에 의한 알루미늄 합금의 응고 결함 관찰 (In-situ X-Ray Observation of Shrinkage Defect of the Aluminum Alloy Castings)

  • 조인성;김정인;임채호
    • 한국주조공학회지
    • /
    • 제30권5호
    • /
    • pp.174-178
    • /
    • 2010
  • In the present study, in-situ real-time observation with an X-ray radioscopic facility was carried out on pure aluminum and aluminum alloy solidification. The three kinds of aluminum alloys, such as pure aluminum, Al-8.5%Si alloy, commercial A356 (AC4C) alloys, were used in the present study. The formations of the shrinkage defects in the castings were visualized and different formation phenomena for different aluminum alloys were investigated.

Technical Investigation into the In-situ Electron Backscatter Diffraction Analysis for the Recrystallization Study on Extra Low Carbon Steels

  • Kim, Ju-Heon;Kim, Dong-Ik;Kim, Jong Seok;Choi, Shi-Hoon;Yi, Kyung-Woo;Oh, Kyu Hwan
    • Applied Microscopy
    • /
    • 제43권2호
    • /
    • pp.88-97
    • /
    • 2013
  • Technical investigation to figure out the problems arising during in-situ heating electron backscatter diffraction (EBSD) analysis inside scanning electron microscopy (SEM) was carried out. EBSD patterns were successfully acquired up to $830^{\circ}C$ without degradation of EBSD pattern quality in steels. Several technical problems such as image drift and surface microstructure pinning were taking place during in-situ experiments. Image drift problem was successfully prevented in constant current supplying mode. It was revealed that the surface pinning problem was resulted from the $TiO_2$ oxide particle formation during heating inside SEM chamber. Surface pinning phenomenon was fairly reduced by additional platinum and carbon multi-layer coating before in-situ heating experiment, furthermore was perfectly prevented by improvement of vacuum level of SEM chamber via leakage control. Plane view in-situ observation provides better understanding on the overall feature of recrystallization phenomena and cross sectional in-situ observation provides clearer understanding on the recrystallization mechanism.

서해대교 현장계측에 기반한 풍속스펙트럼 모형의 비교인구 (A Comparative Study of Wind Speed Spectrum based on the In-Situ Observation at the SeoHae Bridge Site)

  • 김상범;이성진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.417-421
    • /
    • 2006
  • A comparative study of wind speed spectrum based on the in-situ observation at the SeoHae bridge site is conducted. Wind speed and directions of the SeoHae bridge site is measured and analyzed. Mean wind speed and turbulence intensity are estimated. The power spectral density function of the fluctuating component of the wind velocity is estimated. Several wind spectrum models of gust wind turbulence are compared and discussed based on the estimated wind spectrum.

  • PDF

In-Situ Observation of Acicular Ferrite Transformation in High-Strength Low-Alloy Steel Using Confocal Laser Scanning Microscopy

  • Sang-In Lee;Seung-Hyeok Shin;Hyeonwoo Park;Hansoo Kim;Joonho Lee;Byoungchul Hwang
    • Archives of Metallurgy and Materials
    • /
    • 제67권4호
    • /
    • pp.1497-1501
    • /
    • 2022
  • In-situ observation of the transformation behavior of acicular ferrite in high-strength low-alloy steel using confocal laser scanning microscopy was discussed in terms of nucleation and growth. It is found that acicular ferrite nucleated at dislocations and slip bands in deformed austenite grains introduced by hot deformation in the non-recrystallization austenite region, and then proceeded to grow into an austenite grain boundary. According to an ex-situ EBSD analysis, acicular ferrite had an irregular shape morphology, finer grains with sub-grain boundaries, and higher strain values than those of polygonal ferrite. The fraction of acicular ferrite was affected by the deformation condition and increased with increasing the amount of hot deformation in the non-recrystallization austenite region.

용착금속의 파괴인성에 미치는 불균일 미세조직의 영향 (Effect of Heterogeneous Microstructure on the Fracture Toughness of Weld Metal)

  • 정현호;김철만;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of microstructure on the fracture toughness of multi pass weld metal has been investigated. The micromechanisms of fracture process are identified by in-situ scanning electron microscopy(SEM) fracture observation using single edge notched specimen. The notches of the in-situ fracture specimens were carefully located such that the ends of the notches were in the as-deposited top bead and the reheated weld metal respectively. The observation of in-situ fracture process for as-deposited top bead indicated that as strains are applied, microcracks are formed at the interfaces between soft proeutectoid ferrite and acicular ferrite under relatively low stress intensity factor. Then, the microcracks propagate easily along the proeutectoid ferrite phase, leading to final fracture. These findings suggest that proeutectoid ferrite plays an important role in reducing the toughness of the weld metal. On the other hand, reheated regions showed that the microcrack initiated at the notch tip grows along the localized shear bands under relatively high stress intensity factor, confirming that reheated area showing momogeneous and fine microstructure would be beneficial to the fracture resistance of weld metal.

  • PDF