• Title/Summary/Keyword: in-plane buckling

Search Result 330, Processing Time 0.025 seconds

Strength and behaviour of reinforced SCC wall panels in one-way action

  • Ganesan, N.;Indiraa, P.V.;Prasad, S. Rajendra
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • A total of 28 wall panels were cast and tested under uniformly distributed axial load in one-way in-plane action to study the effect of slenderness ratio (SR) and aspect ratio (AR) on the ultimate load. Two concrete formulations, normal concrete (NC) and self compacting concrete (SCC), were used for the casting of wall panels. Out of 28 wall panels, 12 were made of NC and the remaining 16 panels were of SCC. All the 12 NC panels and 12 out of 16 SCC panels were used to study the influence of SR and the remaining 4 SCC panels were tested to study the effect of AR on the ultimate load. A brief review of studies available in literature on the strength and behaviour of reinforced concrete (RC) wall panels is presented. Load-deformation response was recorded and analyzed. The ultimate load of SCC wall panels decreases non-linearly with the increase in SR and decreases linearly with increasing values of AR. Based on this study a method is proposed to predict the ultimate load of reinforced SCC wall panels. The modified method includes the effect of SR, AR and concrete strength.

The U-frame concept to assess the stability of chords of Warren-truss bridges with independent cross-beam decks

  • Wojciech Siekierski
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.77-87
    • /
    • 2024
  • Analytical methods for assessment of the out-of-plane buckling of unbraced top chords of truss bridges may look obsolete while comparing them to finite element analysis. However they are, usually, superior when rapid assessment is necessary. Analytical methods consider the top chord as a bar on elastic supports provided by bracing (Holt, Timoshenko). Correct assessment of the support elasticity (stiffness) is crucial. In the case of truss bridge spans of traditional structural layout (cross-beams at the truss chord nodes only), the elasticity may be set based on the analysis of the, so called, U-frame stiffness. Here the analyses consider the U-frame itself (a pair of verticals and a cross-beam) or the U-frame with adjacent diagonals or the pair of diagonals (in the absence of verticals) and the members of the bottom chord in the adjacent panels. For all the cases, the stability analysis of the chord as a bar in compression is necessary. Unfortunately, the method cannot be applied to contemporary truss bridges without verticals, that usually have independent cross-beam decks (the cross-beams attached to truss chords at their nodes and between them). This is the motivation for the analysis resulting in the method of setting the stiffness of the equivalent U-frame for the aforementioned truss bridges. Truss girders of both, gussetless and gusseted, joints are taken into account.

Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections

  • Wu, Helong;Kitipornchai, Sritawat;Yang, Jie
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.319-332
    • /
    • 2018
  • This paper investigates the free vibration of geometrically imperfect functionally graded car-bon nanotube-reinforced composite (FG-CNTRC) beams that are integrated with two sur-face-bonded piezoelectric layers and subjected to a combined action of a uniform temperature rise, a constant actuator voltage and an in-plane force. The material properties of FG-CNTRCs are assumed to be temperature-dependent and vary continuously across the thick-ness. A generic imperfection function is employed to simulate various possible imperfections with different shapes and locations in the beam. The governing equations that account for the influence of initial geometric imperfection are derived based on the first-order shear deformation theory. The postbuckling configurations of FG-CNTRC hybrid beams are determined by the differential quadrature method combined with the modified Newton-Raphson technique, after which the fundamental frequencies of hybrid beams in the postbuckled state are obtained by a standard eigenvalue algorithm. The effects of CNT distribution pattern and volume fraction, geometric imperfection, thermo-electro-mechanical load, as well as boundary condition are examined in detail through parametric studies. The results show that the fundamental frequency of an imperfect beam is higher than that of its perfect counterpart. The influence of geometric imperfection tends to be much more pronounced around the critical buckling temperature.

Effect on Material Property on the Frature Propagation Behavior (재료의 취성과 연성이 균열의 진전에 미치는 영향)

  • Jeong, Jaeyeon;Woo, Kyeongsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.919-926
    • /
    • 2014
  • In this paper, the effect of material properties on fracture behavior was studied using cohesive zone model and extended finite element method. The rectangular tensile specimen with a central inclined initial crack was modeled by plane stress elements. In the CZM modeling, cohesive elements were inserted between every bulk elements in the predicted crack propagation region before analysis, while in the XFEM the enrichment to the elements was added as needed during analysis. The crack propagation behavior was examined for brittle and ductile materials. For thin specimen configuration, wrinkle deformation was accounted for by geometrically nonlinear post-buckling analysis and the effect of wrinkling on the crack propagation was investigated.

Experimental investigation of masonry walls supported by steel plate-masonry composite beams

  • Jing, Deng-Hu;Chen, Jian-Fei;Amato, Giuseppina;Wu, Ting;Cao, Shuang-Yin
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.709-718
    • /
    • 2018
  • Masonry walls are sometimes removed in buildings to either make new passages or increase the usable space. This may change the loading paths in the structure, and require new beams to transfer the loads which are carried by the masonry walls that are to be removed. One possible method of creating such new beams is to attach steel plates onto part of the existing walls to form a steel plate-masonry composite (SPMC) beam, leading to a new structure with part of the masonry wall supported by a new SPMC beam. This paper presents an experimental investigation into the interaction between the SPMC beam and the masonry wall above. Five SPMC beams supporting a masonry wall were tested to study the influence of parameters including the height-to-span ratio of the masonry wall, height of the beam and thickness of the steel plates. The test results, including failure mode, load-carrying capacity, load-deflection curves and strain distribution, are presented and discussed. It is found that for developing better arching effect in the masonry wall the ratio of the in-plane flexural stiffness of the masonry wall to the flexural stiffness of the SPMC beam must be between 2.8 and 7.1.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

Concrete filled double skin square tubular stub columns subjected to compression load

  • Uenaka, Kojiro
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.745-751
    • /
    • 2021
  • Concrete filled double skin tubular members (CFDST) consist of double concentric circular or square steel tubes with concrete filled between the two steel tubes. The CFDST members, having a hollow section inside the internal tube, are generally lighter than ordinary concrete filled steel tubular members (CFT) which have a solid cross-section. Therefore, when the CFDST members are applied to bridge piers, reduction of seismic action can be expected. The present study aims to investigate, experimentally, the behavior of CFDST stub columns with double concentric square steel tubes filled with concrete (SS-CFDST) when working under centric compression. Two test parameters, namely, inner-to-outer width ratio and outer square steel tube's width-to-thickness were selected and outer steel tube's width-to-thickness ratio ranging from 70 to 160 were considered. In the results, shear failure of the concrete fill and local buckling of the double skin tubes having largest inner-to-outer width ratio were observed. A method to predict axial loading capacity of SS-CFDST is also proposed. In addition, the load capacity in the axial direction of stub column test on SS-CFDST is compared with that of double circular CFDST. Finally, the biaxial stress behavior of both steel tubes under plane stress is discussed.

Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory

  • Rouabhia, Abdelkrim;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Heireche, Houari;Tounsi, Abdeldjebbar;Kouider Halim, Benrahou;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.695-709
    • /
    • 2020
  • The buckling properties of a single-layered graphene sheet (SLGS) are examined using nonlocal integral first shear deformation theory (FSDT) by incorporating the influence of visco-Pasternak's medium. This model contains only four variables, which is even less than the conventional FSDT. The visco-Pasternak's medium is introduced by considering the damping influence to the conventional foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The nanoplate under consideration is subjected to compressive in- plane edge loads per unit length. The impacts of many parameters such as scale parameter, aspect ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the stability investigation of the SLGSs are examined in detail. The obtained results are compared with the corresponding available in the literature.

Numerical Method for Nonlinear Analysis of Composite Shells under Constant Lateral Pressure and Incremented In-plane Compression (일정 횡압력과 증분 압축하중을 동시에 받는 복합재 쉘의 비선형 해석을 위한 수치기법 연구)

  • 김진호;권진희
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • This paper presents a modified arc-length method for the nonlinear finite element analysis of a structure which is loaded in incremental and fixed forces, simultaneously. The main idea of the method is to separate the displacement term by the constant force from that by the incremental force. Presented method is applied to the nonlinear analysis of isotropic shell structures separately loaded by lateral pressure or compression, and shows the excellent agreement with previous results. As an illustrative example of the applicability of the present algorithm, a parametric study is performed on the nonlinear buckling analysis of composite cylindrical panels under the combined load of the incremented compression and the constant lateral pressure.

  • PDF

A Study on the Nonlinear Instability Behavior of Hybrid Structures(I) - Characteristic of Static In-Plane Torsional Buckling by Initial Shape Imperfection- (Hybrid 구조물의 비선형 불안정 거동에 관한 연구(I) -초기형상 불완전에 의한 정적 면내비틀림 좌굴 특성-)

  • Kim, Seung Deog;Son, Su Deok;Kim, Hyung Seok;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.587-597
    • /
    • 2001
  • The structural system that discreterized continuous shells is frequently used to make dome-type structures and these structures show the unstable phenomena by snap-through or bifurcation when a load level reaches certain critical value. The characteristic structural behaviour of a cable dome shows a strong nonlinearity and very sensitive according to the initial imperfection. In this study the shape finding problem by applying initial tension stress is investigated and using this the unstable phenomena of perfectly shaped and initially imperfected shape model by external forces are examined to grasp the unstable behavior of cable dome using the Geiger-type model.

  • PDF