Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device

좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과

  • ;
  • ;
  • C. Soutis (Imperial College, Dept. of Aeronautics)
  • Published : 2002.08.01

Abstract

The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

시편 게이지 면적($길이{\;}{\times}{\;}폭$)의 이차원 크기효과가 T300/924 $[45/-45/0/90]_3s$ 탄소섬유/에폭시 적층판의 압축거동에 대해 조사하였다. 개조된 압축시험치구(ICSTM)와 좌굴방지장치가 $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm,{\;}90mm{\;}{\times}{\;}90mm$의 게이지 길이와 폭을 가진 시편들의 압축시험에 사용하였다. 모든 경우의 파괴들은 시편 게이지 길이 내에서 주로 갑자기 발생하였다. 파괴 후 분석결과는 $0^{\circ}$층의 섬유의 미소좌굴에 의해 파괴를 시작하여 최종파괴를 일으키는 임계파괴기구일 것으로 생각되었다. 이것은 매트릭스 지배적인 파괴를 의미하며, 초기섬유굴곡에 따라 파괴가 지배적으로 시작된다는 것을 말한다 이것은 또한 제작공정과 품질이 압축강도를 결정하는 중요한 역할을 한다고 볼 수 있다. 좌굴방지장치를 장착하고 시험할 때 장치의 볼트 조임 토크에 따라 시편과의 접촉마찰 등에 의해 실제 압축강도 보다 크게 나타나는 결과를 보였다. 좌굴방지장치의 영향을 유한요소법을 이용하여 해석한 결과 실제 압축강도 보다 7% 정도 크게 나타남을 확인하였다. 부가적으로 홀을 갖는 시편들의 압축시험도 수행되었다. 홀에 의한 국부응력집중이 적층판 강도에 지배적 요인이었다. 파괴강도는 홀 크기와 시편 폭이 증가할수록 감소하였으나 탄성응력집중계수로 예측된 값보다는 일반적으로 크게 나타났다. 이것은 사용된 복합재가 이상적인 취성재질이 아니라는 것을 의미하며 홀 주위에서 다소간의 응력이완이 발생한다고 볼 수 있다. X선 검사 사진분석에서 섬유좌굴과 층간분리형태의 손상이 파괴하중의 약 80%에서 홀 가장자리로부터 시작되었고 임계파괴크랙길이인 2-3mm의 불안정한 상태에 도달하기 전까지는 하중 증가와 더불어 안정되게 파괴가 진전되었다(시편의 기하학적 크기에 의존함). 이 손상과 파괴는 선형 cohesive zone 모델로 해석되었다. 노치없는 시편의 압축강도와 평면 파괴인성의 측정된 적층판 변수들을 사용하여 홀의 크기와 시편 폭의 함수로서 홀을 갖는 적층판의 압축강도를 성공적으로 예측하였다.

Keywords

References

  1. Composites v.25 no.6 Is there are size effect in composites Zwen, C. https://doi.org/10.1016/0010-4361(94)90102-3
  2. Composite Materials: Testing & Design, 5th Conf. ASTM STP674 (American Society for Testing and Materials, Philadelphia, 1979) Test method for fiber tensile strength, composite flexural modulus and properties of fabric reinforced laminates Zwen, C.;Smith, W. S.;Wardle, M. W.
  3. NASA TN D-3202 Selected mechanical physical properties of boron filaments Herring, H. W.
  4. J. Composite Mater. v.8 Strength of composite materials in flexure and in tension Bullock, R. E. https://doi.org/10.1177/002199837400800209
  5. NASA CR-112162 Metal aircraft structural elements reinforced with graphite filamentary composites Berg, K. R.;Ramsey, J.
  6. Composite Structures v.18 The effect of specimen size on the bending strength of unidirectional carbon fiber-epoxy Wisnom, M. R. https://doi.org/10.1016/0263-8223(91)90013-O
  7. J. Composite Mater. v.5 Macroscopic fracture mechanics of composite materials Waddoups, M. E.;Eisenmann, J. R.;Kaminski, B. E. https://doi.org/10.1177/002199837100500402
  8. Composite Science & Technology v.60 Apparent strength scaling in continuous fiber composite laminates Lavoie, J. A.;Soutis, C.;Morton, J. https://doi.org/10.1016/S0266-3538(99)00124-4
  9. Journal of Composite Materials v.25 Failure prediction technique for compression loaded in carbon fibre-epoxy laminate with open hole Soutis, C.;Fleck N.A.;Smith, P.A. https://doi.org/10.1177/002199839102501106
  10. Airbus Industrie Test Method, AITM 1.0008 no.2
  11. PhD Thesis, University of London Strength and failure mechanics of unidirectional carbon fiber-reinforced plastics under axial compression Haberle J. G.
  12. PhD Thesis, University of Cambridge Compressive failure of notched carbon fibre-epoxy panels Soutis, C.
  13. J. of Engineering Mater. Tech. v.115 no.5 Micrbuckling of fiber composite: the role of multi-axial loading and creep Slaughter, S.;Fleck, N. A.;Budiansky, B.
  14. Composities v.31 A method for predicting the fracture toughness of CFRP laminates failing by fiber microbuckling Soutis, C.;Curtis, P. T. https://doi.org/10.1016/S1359-835X(00)00003-8
  15. Engineering Desing: A Synthesis of Stress Analysis and Materials Engineering(2nd Edition) Faupel, J. H.;Fisher, A. E.
  16. NISAII-Users Manual, (version5.2) EMRC
  17. NASA CP-2142 Failure prediction techniques for compression loaded composite laminates with holes Mikulas, M. M.
  18. AIAA Journal v.22 no.9 Effect of orthotropy and width on the compression strength of graphite-epoxy panels with holes Rhodes, M. D.;Mikulas, M. M.;McGowan, P. E. https://doi.org/10.2514/3.8774
  19. Stress Concentratin around Holes Savin, G.N.
  20. J. Composite Mater. v.27 Kink-band failure analysis of thick composites in compression Componechi, E. T.;Gillespie, J. W.;Wilkins, D. J. https://doi.org/10.1177/002199839302700502
  21. Int. J. Fracture v.95 Is there thickness effect on compressive strength of unnothched composites Daniel, I. M.;Hsiao, H. M. https://doi.org/10.1023/A:1018692032303