• Title/Summary/Keyword: in-plane bending moment

Search Result 105, Processing Time 0.021 seconds

Development of float off Operation Design for Mdlti Semi-submersible Barges with Symmetrical Stability Casings (반 잠수식 복수부선의 진수설계)

  • 양영태;최문길;이춘보;박병남;성석부
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.72-76
    • /
    • 2003
  • This paper presents the design concept and operation results of float-off for FSO (340,000 DWT Class, ELF AMENAM KPONO Project) built on the ground, without dry dock facilities. It was the first attempt to build FSO, completely, on the ground and launch it using DBU (Double Barge Unit, which was connected by rigid frame structure.) The major characteristics of FSO, which are similar to general VLCC type hull, including topside structure, weigh 51,000 metric ton. In order to have sufficient stability during the deck immersion of DBU, while passing through a minimum water plane area zone, proper trim control was completed with LMC (Load Master Computer). The major features of the monitoring system include calculation for transverse bending moment, shear force, local strength check of each connector, based on component stress, and deformation check during the load-out and float-off. Another major concern during the operation was to avoid damages at the bottom and sides of FSO, due to motion & movement after free-floating; therefore, adequate clearances between DBU and FSO were to be provided, and guide posts were installed to prevent side damage of the DBU casings. This paper also presents various measures that indecate the connector bending moment, damage stability analysis, and mooring of DBU during float off.

A HYBRID TREFFTZ FLAT SHELL ELEMENT

  • Choo, Yeon-Seok;Choi, Noo-Ri;Lee, Byung-Chai
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.402-407
    • /
    • 2008
  • We suggest a linear elastic flat shell element based on the HT(hybrid Trefftz) method. We formulate the membrane part of the proposed element as an HT plane element with the drilling DOF. For the bending part, we developed a thick HT plate element that can represent transverse shear deformations accurately. Because we derive both the membrane and the bending parts consistently using the HT functional, we can easily construct the triangular and the quadrilateral elements in a unified way. In addition, warping of quadrilateral element is compensated by force and moment equilibrium equations. We evaluate the performance of the new element in terms of accuracy and convergence.

  • PDF

Vibraion Damping Analysis in $90^0$ Laminated Beam Considering the Effect of Interlaminar Stess (층간응력의 효과를 고려한 단일방향 900복합재 적층보의 진동감쇠 해석)

  • Im, Jong-Hwi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1261-1270
    • /
    • 2000
  • This paper is concerned with the development of a general model for predicting material damping in laminates based on the strain energy method. In this model, the effect of interlaminar stress on damping is taken into accounts along with those of in-plane extension/compression and in-plane shear. The model was verified by carrying out the damping measurements on $90^0$ unidirectional composite beams varying length and thickness. The analytical predictions were favorably compared with the experimental data. The transverse shear($$\sigma$_{yz}$) appears to have a considerable influence on the damping behaviors in $90^0$ unidirectional polymer composites. However, the other interlaminar stresses($$\sigma$_{xz}$, $$\sigma$_z$) were shown to have little impact on vibration damping in $90^0$ laminated composite beam.

Structural Analysis of Frames with Shear Walls (전단벽(剪斷壁)을 가진 프레임의 구조해석(構造解析)에 관한 연구(研究))

  • Lee, Dong Guen;Kang, Suk Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.77-83
    • /
    • 1986
  • In this paper, an accurate model for structural analysis of frames with shear walls is introduced. Static and dynamic analysis of two example structures has been performed using the computer program SWAN which employes the newly developed 12 degrees of freedom plane stress element and the results are compared to those obtained using SAP IV. The 12 degrees of freedom element resulted in improved shear stress distribution in wall elements and bending moment in beam elements.

  • PDF

Analytical method for the out-of-plane buckling of the jib system with middle strut

  • Wang, T.F.;Lu, N.L.;Lan, P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.963-980
    • /
    • 2016
  • The jib system with middle strut is widely used to achieve the large arm length in the large scale tower crane and the deployability in the mobile construction crane. In this paper, an analytical solution for the out-of-plane buckling of the jib system with middle strut is proposed. To obtain the analytical expression of the buckling characteristic equation, the method of differential equation was adopted by establishing the bending and torsional differential equation of the jib system under the instability critical state. Compared with the numerical solutions of the finite element software ANSYS, the analytical results in this work agree well with them. Therefore, the correctness of the results in this work can be confirmed. Then the influences of the lateral stiffness of the cable fixed joint, the dip angle of the strut, the inertia moment of the strut, and the horizontal position of the cable fixed joint on the out-of-plane buckling behavior of the jib system were investigated.

Curved laminate analysis

  • Chiang., Yih-Cherng
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.169-186
    • /
    • 2011
  • This paper is devoted to the development of the equations which describe the elastic response of a curved laminate subjected to in-plane loads and bending moments. Similar to the classic $6{\times}6$ ABD matrix constitutive relation of a flat laminate, a new $6{\times}6$ matrix constitutive relation between force resultants, moment resultants, mid-plane strains and deformed curvatures for a curved laminate is formulated. This curved lamination theory will provide the fundamental basis for the analyses of curved laminated structures. The stress predictions by the present curved lamination theory are compared to those by the curved laminate analysis that neglected the nonlinear terms in the derivation of the constitutive relation. The results show that the curved laminate analysis that neglected the nonlinear terms cannot reflect the effect of curvature and can no longer predict the stresses accurately as the curvature becomes noticeable. In this paper, a curved lamination theory that retains the nonlinear terms and, therefore, accounts for the effect of the non-flat geometry of the structure will be developed.

In-plane and out-of-plane bending moments and local stresses in mooring chain links using machine learning technique

  • Lee, Jae-bin;Tayyar, Gokhan Tansel;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.848-857
    • /
    • 2021
  • This paper proposes an efficient approach based on a machine learning technique to predict the local stresses on mooring chain links. Three-link and multi-link finite element analyses were conducted for a target chain link of D107 with steel grade R4; 24,000 and 8000 analyses were performed, respectively. Two serial Artificial Neural Network (ANN) models based on a deep multi-layer perceptron technique were developed. The first ANN model corresponds to multi-link analyses, where the input neurons were the tension force and angle and the output neurons were the interlink angles. The second ANN model corresponds to the three-link analyses with the input neurons of the tension force, interlink angle, and the local stress positions, and the output neurons of the local stress. The predicted local stresses for the untrained cases were reliable compared to the numerical simulation results.

A Study on Dynaniic Analysis for Earthquake Design of cable-stayed Bridges (사장교의 내진설계를 위한 동적해석에 관한 연구)

  • 이진휴;이재영;이장춘
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.103-115
    • /
    • 1994
  • The dynamic earthquake analysis of plane cable-stayed bridge structures was formulated and implemented into a computer program which analyzes plane cable-stayed bridge structu- res subjected to initial cable tensions, member dead and live loads and seismic loads. Cable-stayed bridges were modelled as multi-degrees of freedom systems with lumped- mass. Various earthquake responses such as dynamic deflection, bending moment, shear force and cable tension were investigated by the dynamic analyses in the form of the time history analysis. The time history analysis was based on the mode superposition method. The study revealed that Fan-l type cable-syayed bridges is generally superior to other types for the earthquake proof even though aspects of deflection and section force of each type presents respective advantages and disadvantages. The study provided a method to design the sections of cable-stayed bridges under seismic loads with various design parameters related to structural types. The study is expected to be useful for effective design of cable-stayed bridges with conside- ration of earthquake.

  • PDF

Buckling Analysis of Curved Stiffened Web Plate using Eight and Nine-Node Flat Shell Element with Substitute Shear Strain Field (대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 곡선 보강 복부판의 좌굴해석)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.455-464
    • /
    • 2011
  • In this study, the buckling analysis of the vertically curved stiffened web plate was conducted through finite-element analysis, using an eight- and nine-node flat shell element with a substitute shear strain field. To investigate the buckling behavior of the vertically curved web plate with a longitudinal or vertical stiffener under in-plane moment loading, parametric studies were conducted for the variation of the width (b) and ratio of the bending stiffness of the stiffener to that of the plate (${\gamma}=EI/bD$). The static behavior of the vertically curved web plate without a stiffener was also investigated, and then the buckling abilities of the longitudinal and vertical stiffeners were compared under moment loading.

Analytical Study on Behaviour of Plane Steel Frame with Semi-Rigid Beam-to-Column Connection (반강접 접합부를 갖는 평면 강골조의 거동에 관한 해석적 연구)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.483-492
    • /
    • 2009
  • In this study, nonlinear analysis of steel plane frame was performed using the refined plastic hinge method of advanced analysis techniques. In deterioration of stiffness in plastic zone, influences by flexural bending, residual stress, geometrical non-linearity, and semi-rigid connection are considered. And also, further reduced tangent modulus was used for geometrical non-linearity, top and seat angle were chosen for semi-rigid connection. Furthermore, 3 parameter power model was used for moment-rotation behaviour of beam to column connection. The loading conditions are combined with axial and lateral force and the inverse triangle distribution of lateral and eight type of analytical models were used in analysis. The results of analyses were compared with semi-rigid and rigid connection on behaviour of numerical analysis models. And also, the behaviors of frame with changes of semi-rigidity were analyzed by using the results obtained from MIIDAS-GENw.