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Abstract 
We suggest a linear elastic flat shell element based on the HT(hybrid Trefftz) method. We formulate the membrane part 

of the proposed element as an HT plane element with the drilling DOF. For the bending part, we developed a thick HT 

plate element that can represent transverse shear deformations accurately. Because we derive both the membrane and 

the bending parts consistently using the HT functional, we can easily construct the triangular and the quadrilateral 

elements in a unified way. In addition, warping of quadrilateral element is compensated by force and moment 

equilibrium equations. We evaluate the performance of the new element in terms of accuracy and convergence. 

1. INTRODUCTION 

One of the most important elements in modeling and analysis of 3-dimensional structures is a shell element. Many 

researchers have been interested in developing various types of high performance shell elements. Among those methods, 

a viable alternative is the HT method, which has little restriction on the shape of elements inherited from the variational 

formulation that includes only boundary integrals. Jirousek et al. developed various plane and plate elements based on 

the HT method. In this study, we develop an accurate and efficient HT flat shell element that can be used with 

conventional finite elements in the structural analysis for general purposes. We apply the HT variational principle 

consistently to both the membrane and the bending part of the element; the membrane part with drilling DOF’s, and the 

bending part including transverse shear deformations based on Mindlin-Reissner’s thick plate theory. Additionally, 

warping phenomenon of quadrilateral element is treated by force and moment equilibrium equations that consider 

geometrical configuration. 

2. HYBRID TREFFTZ FUNCTIONAL AND ELEMENT FORMULATION 

The HT functional of internal displacement u  and boundary displacement u~  is defined for elasticity problems as  
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where W  refers to the strain energy density function. In addition, ib  and iT  are the body force and the traction, and 

iT  is the prescribed traction along TΓ . Taking variation of equation (1) with respect to the two variables and some 

mathematical manipulations lead to the following equations for u  satisfying governing equations a priori. 
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To get the finite element equations in matrix form, we should approximate u  and u~ , 
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where { }pu  is a particular solution for the governing equations, and { }jφ  , jc , { }d  and [ ]N~  are homogeneous 

Trefftz functions , their unknown coefficients, nodal DOF and 1-D shape function, respectively. Traction vector can be 

derived from equation (3) and constitutive equations as follows: 
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where [ ]L  is a differential operator relating displacements to strains, [ ]A  is a matrix of direction cosines of an 

outward normal vector, and [ ]E  represents the constitutive relation. By applying approximations in equations (3, 4) to 

equations (2) and eliminating the coefficient vector { }c , we get the matrix equations as follows. 
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3. APPROXIMATION OF DISPLACEMENT FIELDS FOR MEMBRANE BEHAVIOR 

We construct the Trefftz function [ ]φ  in equation (3) using the Muskehlishbili’s solution for plane elasticity. 
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where F  and G  are analytic functions and over bar means complex conjugate, μ  and ν  are shear modulus and 

Poisson’s ratio, and ( )
( )ν

νκ +
−= 1

3 . In addition, i  means an imaginary number, iyxz +=  and prime means 



differentiation with respect to z . Because Φ  in equation (6) satisfy the governing equations of the plane problem, 

{ }u  also satisfies the governing equations naturally. In the Muskehlishbili’s solution, we have to select arbitrary 

analytic functions F  and G  of complex variable z . We assign complex power series to F  and G  as follows  
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However, ensuring numerical stability in forming the element stiffness matrix, we drop the first pair of F  and 

G  when 1=k , i.e. ( ) izzF =  and ( ) 0=zG . When approximating { }u~ , we used Allman’s quadratic displacement 

and drilling DOF. So, along an edge, the approximation can be written as 
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where liN~  is a linear shape function on the edge, and ix , iy  and 12l  means the coordinates of the two end points 

and the length of the side, respectively. The vector { }T
zxu 21 θL  is a nodal DOF vector on the edge. 

4. APPROXIMATION OF DISPLACEMENT FIELDS FOR BENDING BEHAVIOR 

The formulation for plate element which was developed by Jiousek et al. is used for this flat shell element. The 

homogeneous solution for the thick plate can be constructed for the decoupled governing equations of the plate and the 

boundary shape functions are constructed to represent transverse shear deformations accurately. To consider the 

transverse shear deformations in the approximation of { }u~ , we assume that rotations are linear, while transverse 

displacement is quadratic by introducing a extra nodeless degree. Then we can derive the transverse shear strains from 

the equilibrium equations and the constitutive equations, respectively, and comparing the two strains reveals that the 

former is a constant while the latter is linear. Thus, setting the linear term of the latter to be zero brings the detailed 

expression for extra nodeless degree. 

5. TREATMENT OF WARPING 

Since stiffness matrix of flat shell element is calculated on transformed local coordinates that is made by three nodes, 

there can be warping that one of four nodes is off the transformed surface in case of quadrilateral element. For 

representing exact geometrical configuration, the warping phenomenon must be treated in a physically appropriate way. 

In this study, force and moment equilibrium are proposed to compensate the warping of quadrilateral element after 

calculating stiffness matrix on mid-surface of four nodes as in Fig. 1. The basic idea of this treatment is to revise couple 

of forces at every node on mid-surface for developing moments which exist at original configuration. At first, transverse 



forces zif  are added to cause bending moment induced by warping in Fig. 1(a). In this case, transverse forces must 

satisfy self-equilibrium and moment equilibrium with external forces. 
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Additionally, least squares method is applied to transverse forces as in Equation (10) and subsequently we can 

get explicit value of transverse forces.  

 

0;;..        2 === ∑∑∑∑
i

ziy
i

ziix
i

zii
i

zi fFfyFfxtsfMin   (10) 

 

Next, forces are added to cause in-plane bending moment in Fig. 1(b). These forces also satisfy moment 

equilibrium with original in-plane moments. 
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As a result of revising forces at nodes, transformation matrices for forces are obtained and are applied to original 

stiffness matrix on mid-surface. 
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6. NUMERICAL EXAMPLES 

To evaluate the performance of the proposed element (NEW3/4), we analyzed two test problems and compared the 

results to those of other elements. We selected TRIA3/QUAD4 of NASTRAN, Allman’s element (ALLMAN3/4) with 

DKMT/DKMQ element, and HT plane element (HT3/4) with HT thick plate element as comparative shell elements. 

Pinched cylinder 

We evaluated the performance of the shell element through the pinched cylinder problem. The reference solution is 
5108248.1 −×=w  at the loading point in Fig. 2. Fig. 3 shows the normalized deflection to the reference solution. In the 

result, the NEW4 and NEW3 show good behavior.  

Twisted beam 

To evaluate the membrane and bending behavior at the same time, we solved twisted beam problem depicted in Fig. 4 



with quadrilateral elements. We applied in-plane and out-of-plane unit load at the tip of the beam and listed the 

Normalized tip displacement with respect to the reference solution in Table 1. It is proven for the proposed elements to 

have good performance. 

7. CONCLUSIONS 

We have developed a flat shell element by combining the membrane and bending stiffness based on the HT method. We 

have used Allman’s quadratic displacement field as a boundary displacement field to supplement drilling DOF in the 

membrane stiffness. We have constructed the bending stiffness from the thick plate theory and approximated the 

displacement field by equilibrium equations of thick plate. We have considered the transverse shear deformations using 

the relation of the transverse shear strains derived from the equilibrium equation and the constitutive equation. The 

warping phenomenon of quadrilateral element is treated mathematically considering geometrical configuration. To 

investigate the convergence and accuracy, we have tried a series of numerical tests. We have demonstrated accuracy 

and convergence rate of the proposed element.  
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(a) Adding transverse forces                   (b) Adding in-plane forces 

Fig. 1 Adding couple of forces to treat warping effect 



 
Fig. 2 Finite element model of a pinched cylinder 
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(a) Quadrilateral element                 (b) Triangular element 

Fig. 3 Normalized displacement of the pinched cylinder 

 
Fig. 4 Finite element model of a twisted beam 

 

Table 1. Normalized tip displacement of a twisted beam 

Mesh ALLMAN4 QUAD4 HT4 NEW4 Ref. 

in plane 
61×  0.86 0.98 5.90 0.88 

0.00542 
122×  0.95 0.99 1.35 0.97 

out of plane 
61×  1.15 0.96 24.00 1.16 

0.00175 
122×  1.06 0.99 1.49 1.11 
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