• Title/Summary/Keyword: in-band interference

Search Result 730, Processing Time 0.026 seconds

Performance Analysis of IBAC DAB System for Bandwidth in Korea FM Interference Environmentlevance Feedback (국내 FM 간섭환경에서 대역폭에 따른 IBAC DAB 시스템의 성능분석)

  • 조병록;김태훈;오길남
    • Journal of Broadcast Engineering
    • /
    • v.5 no.2
    • /
    • pp.211-219
    • /
    • 2000
  • The IBAC DAB system was interfered by existing FM broadcasting signal as was used guardband within existing FM broadcasting. The FM interference signals are very important parameter in performance evaluation of IBAC DAB system. We got the characteristic of FM PSD in according to instantaneous change and average characteristic of FM broadcasting signal in according to characteristic of FM channel. In this paper, based on proposed IBAC DAB system, we analyze effects of FM interference for occupied bandwidth and performance of IBAC DAB modeling various FM interference signals with sum of sinusoid function using C language, suggest FM interference ratio that can maintain performance. We was know that IBAC DAB system have a great performance variation in according to average characteristic of FM PSD by simulation results, also, FM interference ration that can maintain performance of system is 10dB.

  • PDF

The hybrid method of Listen-Before-Talk and Adaptive Frequency Hopping for coexistence of Bluetooth and WLAN (블루투스 및 무선 LAN 시스템의 동시지원을 위해 Listen-Before-Talk 기법을 결합한 Adaptive Frequency Hopping 방식의 제안)

  • ;Bin Zhen
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7B
    • /
    • pp.706-718
    • /
    • 2002
  • In bluetooth system, there are two kinds of interference. One is the frequency static interference, for example 802.11 direct sequence, the interferer uses fixed frequency band. Another is frequency dynamic interference, for example other piconets or 802.11 frequency hopping, the interferer uses dynamic frequency channel and cant be estimated. In this paper we introduce a novel solution of hybrid method of Listen-Before-Talk (LBT) and Adaptive Frequency Hopping (AFH) to address the coexistence of bluetooth and Direct Sequence of wireless local area network (WLAN). Before any bluetooth packet transmission, in the turn around time of the current slot, both the sender and receiver sense the channel whether there is any transmission going on or not. If the channel is busy, packet transmission is withdrawn until another chance. This is the LBT in Bluetooth. Because of asymmetry sense ability of WLAN and bluetooth, AFH is introduced to combat the left front-edge packet collisions. In monitor period of AFH, LBT is performed to label the channels with static interference. Then, all the labeled noisy channels are not used in the followed bluetooth frequency hopping. In this way, both the frequency dynamic and frequency static interference are effectively mitigated. We evaluate the solution through packet collision analysis and a detail realistic simulation with IP traffic. It turns out that the hybrid method can combat both the frequency dynamic and frequency static interference. The packet collision analysis shows it almost doubles the maximal system aggregate throughput. The realistic simulation shows it has the least packet loss.

Performance of Adaptive Correlator using Recursive Least Square Backpropagation Neural Network in DS/SS Mobile Communication Systems (DS/SS 이동 통신에서 반복적 최소 자승 역전파 신경망을 이용한 적응 상관기)

  • Jeong, Woo-Yeol;Kim, Hwan-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 1996
  • In this paper, adaptive correlator model using backpropagation neural network based on complex multilayer perceptron is presented for suppressing interference of narrow-band of direct sequence spread spectrum receiver in CDMA mobile communication systems. Recursive least square backpropagation algorithm with backpropagation error is used for fast convergence and better performance in adaptive correlator scheme. According to signal noise ratio and transmission power ratio, computer simulation results show that bit error ratio of adaptive correlator uswing backpropagation neural network improved than that of adaptive transversal filter of direct sequence spread spectrum considering of co-channel and narrow-band interference. Bit error ratio of adaptive correlator using backpropagation neural network is reduced about $10^{-1}$ than that of adaptive transversal filter where interference versus signal ratio is 5 dB.

  • PDF

Vulnerability Analysis of Network Communication Device by Intentional Electromagnetic Interference Radiation (IEMI 복사에 의한 네트워크 통신 장비의 취약성 분석)

  • Seo, Chang-Su;Huh, Chang-Su;Lee, Sung-Woo;Jin, In-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • This study analyzed the Vulnerability of Network Communication devices when IEMI is coupled with the Network System. An Ultra Wide Band Generator (180 kV, 700 MHz) was used as the IEMI source. The EUTs are the Switch Hub and Workstation, which are used to configure the network system. The network system was monitored through the LAN system configuration, to confirm a malfunction of the network device. The results of the experiment indicate that a malfunction of the network occurs as the electric field increases. The data loss rate increases proportionally with increasing radiating time. In the case of the Switch Hub, the threshold electric field value was 10 kV/m for all conditions used in this experiment. The threshold point causing malfunction was influenced only by the electric field value. The correlation between the threshold point and pulse repetition rate was not found. However, in case of the Workstation, it was found that as the pulse repetition rate increases, the equipment responds weakly and the threshold value decreases. To verify the electrical coupling of the EUT by IEMI, current sensors were used to measure the PCB line inside the EUT and network line coupling current. As a result of the measurement, it can be inferred that when the coupling current due to IEMI exceeds the threshold value, it flows through the internal equipment line, causing a malfunction and subsequent failure. The results of this study can be applied to basic data for equipment protection, and effect analysis of intentional electromagnetic interference.

A Triple-Band Transceiver Module for 2.3/2.5/3.5 GHz Mobile WiMAX Applications

  • Jang, Yeon-Su;Kang, Sung-Chan;Kim, Young-Eil;Lee, Jong-Ryul;Yi, Jae-Hoon;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • A triple-band transceiver module for 2.3/2.5/3.5 GHz mobile WiMAX, IEEE 802.16e, applications is introduced. The suggested transceiver module consists of RFIC, reconfigurable/multi-resonance MIMO antenna, embedded PCB, mobile WiMAX base band, memory and channel selection front-end module. The RFIC is fabricated in $0.13{\mu}m$ RF CMOS process and has 3.5 dB noise figure(NF) of receiver and 1 dBm maximum power of transmitter with 68-pin QFN package, $8{\times}8\;mm^2$ area. The area reduction of transceiver module is achieved by using embedded PCB which decreases area by 9% of the area of transceiver module with normal PCB. The developed triple-band mobile WiMAX transceiver module is tested by performing radio conformance test(RCT) and measuring carrier to interference plus noise ratio (CINR) and received signal strength indication (RSSI) in each 2.3/2.5/3.5 GHz frequency.

Inter-cell Interference Coordination Method Based on Active Antenna System in Heterogeneous Networks (이종망 환경에서 능동 안테나 시스템 기반의 셀간 간섭 제어 방법)

  • Kim, Byoung-June;Park, Haesung;Kim, Duk Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.548-556
    • /
    • 2014
  • To cope with recently increasing demand for data traffics, heterogeneous networks have been actively studied, where small cells are deployed within a macro cell coverage with the same frequency band. To mitigate the interference from the macro cell to small cells, an enhanced Inter-cell Interference Coordination (eICIC) technique has been proposed, where ABS (Almost Blank Subframe) is used in time domain. However, there is a waste of resource since no data is transmitted in a macro-cell in ABS. In this paper, we propose a new interference management method by using a 3D sector beam based on Active Antenna System (AAS), where Genetic Algorithm (GA) is applied to reduce the antenna gain toward a small-cell. With the proposed scheme, the macro-cell and small cells can transmit data at the same time with the AAS antenna pattern generating reduced interference to small cells. The performance of the proposed scheme is evaluated by using an LTE-Advanced system level simulator.

Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System

  • Li, Hongjia;Xu, Xiaodong;Hu, Dan;Tao, Xiaofeng;Zhang, Ping;Ci, Song;Tang, Hui
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.664-677
    • /
    • 2011
  • In order to control interference and improve spectrum efficiency in the femtocell and macrocell overlaid system (FMOS), we propose a joint frequency bandwidth dynamic division, clustering and power control algorithm (JFCPA) for orthogonal-frequency-division-multiple access-based downlink FMOS. The overall system bandwidth is divided into three bands, and the macro-cellular coverage is divided into two areas according to the intensity of the interference from the macro base station to the femtocells, which are dynamically determined by using the JFCPA. A cluster is taken as the unit for frequency reuse among femtocells. We map the problem of clustering to the MAX k-CUT problem with the aim of eliminating the inter-femtocell collision interference, which is solved by a graph-based heuristic algorithm. Frequency bandwidth sharing or splitting between the femtocell tier and the macrocell tier is determined by a step-migration-algorithm-based power control. Simulations conducted to demonstrate the effectiveness of our proposed algorithm showed the frequency-reuse probability of the FMOS reuse band above 97.6% and at least 70% of the frequency bandwidth available for the macrocell tier, which means that the co-tier and the cross-tier interference were effectively controlled. Thus, high spectrum efficiency was achieved. The simulation results also clarified that the planning of frequency resource allocation in FMOS should take into account both the spatial density of femtocells and the interference suffered by them. Statistical results from our simulations also provide guidelines for actual FMOS planning.

Multi-User X-Channel Interference Alignment in 5 Generation MIMO Mobile Communications (5세대 MIMO 이동 통신의 다중 사용자 X 채널 간섭 정렬)

  • Kim, Jeong-Su;Lee, Moon Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.61-69
    • /
    • 2017
  • The study on interference channel is very important information theoretically and many studies have been done on it. However, even in the simplest case, even in the case of two user interfering channels, the channel capacity is not yet known except in special cases. Recently, research on the multiplexing gain that shows the tendency of the transmission rate in the high signal to noise ratio (SNR) band has been actively carried out, instead of accurately grasping the channel capacity. Obtaining optimal multiplexing gain can reveal trends in channel capacity at high signal-to-noise ratio bands. In an interfering channel with two users, the best multiplexing gain can be obtained by eliminating the interference. However, recent research shows that when the number of users is more than three, the optimal multiplexing gain can not be obtained only by zero forcing and a new technique called interference sorting is needed. There are two types of interference sorting techniques. Beamforming A method of effectively separating signals and interference by properly selecting matrices and constructing structured codes using rational numbers and irrational numbers. The interference alignment technique can achieve optimal multiplexing gain in various environments such as interference channel, X channel, compound broadcast channel, and multi hop network for multi source multi destination. In recent years, it has also been applied to distributed storage. Lee et al., "Lattice Code Interference Alignment in Cooperative Multipoint Transmission (COMP) for Interference Channels of Three Users", Journal of the Institute of Electronics Engineers, vol.49-TC,no.6,2012. In this paper, the DoF of delayed channel information is obtained.

Analysis of Frequency Sharing Performance using Guard Band and User Device Density in a Urban Environment (도심 환경에서 보호대역과 단말밀도를 이용한 주파수 공유성능 분석)

  • Cho, Ju-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1864-1869
    • /
    • 2012
  • We make an interference analysis to obtain a critical ctiteria for coexisting availability of WLAN and WiBro between adjacent channels can be used in TVWS(TV White Space). To meet this analysis, we set the various transmission parameters including the emission and blocking mask, antenna height and gain, transmission power and bandwidth, channel model etc. And, based on these parameters, we analyze on performances according to a variation of guard band, a number of service user and allowable transmit power of the user operating in the adjacent channels. In this paper, we consider a urban environment and apply a Extended Hata-SRD for WLAN and an interference link and Extended Hata model for WiBro, respectively. With these results, we can see how each system can be shared in an adjacent channel.

Low Power SoC Modem Design for High-Speed Wireless Communications (초고속 무선 통신을 위한 저전력 모뎀 SoC 설계)

  • Kim, Yong-Sung;Lim, Yong-Seok;Hong, Dae-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.7-10
    • /
    • 2010
  • In this paper, we design a modem SoC (System on Chip) for low power consumption and high speed wireless communications. Among various schemes of high speed communications, an MB-OFDM (Multi Band-Orthogonal Frequency Division Multiplexing) UWB (Ultra-Wide-Band) chip is designed. The MB-OFDM uses wide-band frequency to provide high speed data rate. Additionally, the system imposes no interference to other services. The 90nm CMOS (Complementary Metal-Oxide Semiconductor) technology is used for the SoC design. Especially, power management mode is implemented to reduce the power consumption.