• Title/Summary/Keyword: in vivo and in vitro conversion

Search Result 49, Processing Time 0.025 seconds

Methimazole-disulfide as an Anti-Thyroid Drug Metabolite Catalyzed the Highly Regioselective Conversion of Epoxides to Halohydrins with Elemental Halogens

  • Eshghi, H.;Tayyari, S.F.;Rezvani-Amin, Z.;Roohi, H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • The regioselective ring opening of epoxides using elemental iodine and bromine in the presence of methimazole (MMI, a anti-thyroid drug) and its metabolite methimazole-disulfide as new catalysts are studied. MMI easily converted in vitro to MMI-disulfide without any double activation presented in vivo. FT-Raman and UV spectroscopies are used to study the interaction of iodine with these catalysts. The results indicate that both catalysts are efficient in polyiodide formation, but MMI-disulfide can catalyze this reaction in higher yield and regioselectivity. The complex [(MMI-disulfide)I]+.I3- is considered to be formed initially which could be bulkier by addition of excess of iodine in the course of the reaction. These bulky nucleophiles have a fundamental role in the high regioselectivity by attacking the less sterically hindered epoxide carbon. In this study we suggest that MMI is readily converted to MMI-disulfide by interaction with iodine or activated iodine in thyroid gland, and this process is responsible for high anti-thyroid activity of MMI.

Synthesis and Biopharmaceutical Studies of Ceftezole Ethoxycarbonyloxyethyl Ester (세프테졸 에톡시카보닐옥시에칠 에스텔의 합성 및 생물약제학적 연구)

  • Park, Yong-Chai;Lee, Jin-Hwan;Park, Jae-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.2
    • /
    • pp.125-131
    • /
    • 1997
  • Ethoxycarbonyloxyethyl ester of ceftezole (CFZ-ET) was synthesized as a prodrug by esterification of ceftezole (CFZ) with ethoxycarbonyloxyethyl chloride and was confirmed by spectroscopic analyses. CFZ-ET was more lipophillic than CFZ as assessed by n-octanol and water partition coefficients at various pH. CFZ-ET itself did not show any microbiological activity in vitro, but showed substaintial microbiological activity after oral administration of CFZ-ET, indicating that CFZ-ET is converted to microbiologically active metabolite, probably CFZ, in the body. When CFZ-ET was incubated in blood, liver and intestine homogenates of rabbits, liver homogenate showed the fastest conversion of CFZ-ET. CFZ-ET appears rapidly metabolized in the liver when given orally due to the hydrolysis of the ester to CFZ, the parent drug of CFZ-ET. In vivo metabolism of CFZ-ET to CFZ was confirmed in rabbit by HPLC analysis. CFZ-ET were higher than those in the serum samples taken after oral administration of equivalent amount of CFZ. Oral bioavailability of CFZ-ET was 1.5-fold higher than that of CFZ in rabbits because of enhanced lipophilicity and absorption. Based on these findings, CFZ-ET appears useful as a prodrug of CFZ to improve the oral bioavailability of CFZ.

  • PDF

Effects of Cordyceps militalis on the penile nitric oxide synthase activity and the level of blood testosterone in hydrocortisone acetate-treated rats (동충하초(冬蟲夏草)가 Hydrocortisone을 투여한 흰쥐의 Nitric Oxide Synthase 활성 및 Testosterone 함량에 미치는 영향)

  • Min, Gun-Woo;Park, Jong-Hyuck;Yoon, Cheol-Ho;Shin, Uk-Seob;Han, Yeong-Hwan;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.389-398
    • /
    • 2000
  • The fallowing are the results of the experimental studies of Cordyceps militaris (CM) on the penile nitric oxide synthase (NOS) activity and the level of blood testosterone in hydrocortisone acetate-treated rats. CM was tested for the effects on activity of xanthine oxidase and lipid peroxidation in penis of hydrocortisone acetate-treated rats. In vitro, CM didn't effect the levels of lipid peroxide and the activity of NOS. In the penis of hydrocortisone acetate-treated rats, lipid peroxide, the activities and ratio of type conversion of xanthine oxidase were increased but activity of NOS and content of nitrite were decreased. In vivo, after administration of CM to hydrocortisone acetate-treated rats, levels of lipid peroxide in penis was decreased. Also, the activities and ratio of type conversion of xanthine oxidase were decreased, too. The body weight and concentration of testosterone in the blood were increased. The effects of Cordyceps militalis Broth did better than the effects of Cordyceps militalls Mycelia, These results suggest that CM decrease the activities of free radical generating enzymes such as xanthine oxidase which form lipid peroxide and increase the penile NOS activity and the level of blood testosterone in hydrocortisone acetate-treated rats. Conclusively, CM is capable of improving of sexual ability in hydrocortisone acetate-treated rats.

  • PDF

STABILITY OF A DISULFIDE BOND OF CHIMERIC PEPTIDE DURING IN VIVO TRANSCYTOSIS THROUGH THE BRAIN ENDOTHELIAL CELLS

  • Kang, Young-Sook;Ulrich Bickel
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.150-151
    • /
    • 1998
  • Drug delivery to the brain is facilitated by the synthesis of chimeric peptides, where in neuropharmaceuticals are linked to a vector such as an antibody to the transferrin receptor that mediates transcytosis through the blood-brain barrier (BBB). When disulfide linkers are used in the chimeric peptide, it is crucial that the S-S bridge is stable during transit and that cleavage does not occur prematurely within endothelial cells, as the peptide drug moiety would then be sequestered by the BBB instead of passing through it. The present study addressed that problem. As a model drug a metabolically stable opioid peptide, [$^3$H]DALDA (Tyr-dArg-Phe-Lys-NH$_2$), was used. It was monobiotinylated with NHS-SS-biotin to yield bio-[$^3$H]DALDA. The biotinylated peptide was bound to the vector OX26-SA which is a covalent conjugate of OX26 and streptavidin (molar ratio = 1: 1). In vitro treatment of the chimeric peptide, bio-[$^3$H]DALDA/OX26-SA, with a reducing agent, dithiothreitol, released the labeled peptide from the vector by conversion of bio-[$^3$H]DALDA to the desbiotinylated derivative, desbio-[$^3$H]DALDA.

  • PDF

In vivo Metabolism of Endosulfan in Carp (Cyprinus carpio) (In vivo 시험에 의한 잉어체내 $^{14}C-endosulfan$의 대사)

  • Lee, K.B.;Shim, J.H.;Suh, Y.T.
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.203-209
    • /
    • 1994
  • When $^{14}C-{\alpha}-endosulfan$ was incubated with carp liver, kidney and gut preparations, it was metabolized to water soluble and organosoluble metabolites. In an in vitro test, endosulfan was converted to endosulfan ${\alpha}-hydroxyether$ (EHE), endosulfan alcohol (EA) and endosulfan ether (EE). The addition of NADPH resulted in rapid conversion of endosulfan to the metabolites in 105,000 g soluble fraction and microsomes. However, the rate of metabolism of endosulfan in liver, kidney and gut supplemented with NADPH as a cofactor was higher in the 105,000 g soluble fraction than that in the microsomes of carp under incubation conditions. The enzymes probably involved in the metabolism of endosulfan include the glutathione S-transferase (GST) and the mixed function oxidases (MFO), based on the evidence that addition of either GSH or NADPH increased the degradation of endosulfan.

  • PDF

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

Effect of $1-{\beta}-D-Arabinofuranosylcytosine$ on the Cytoplasmic Organelles of the Hepatocytes in Albino Mice ($1-{\beta}-D-Arabinofuranosylcytosine$이 Mouse의 간세포소기관(肝細胞小器官)에 미치는 영향(影響))

  • Kim, S.Y.;Lee, K.S.
    • Applied Microscopy
    • /
    • v.13 no.1
    • /
    • pp.13-30
    • /
    • 1983
  • [ $1-{\beta}-D-Arabinofuranosylcytosine$ ](ara-C), which is a pyrimidine nucleoside analog is cytotonic to mammalian cells in culture and is active in vitro and in vivo against a variety of DNA viruses. The precise mechanism of action of ara-C has not been determined, although ara-C is thought to act as an antimetabolite, interfering with the synthesis of deoxyribonucleic acid(DNA). Cytosine arabinoside originally seemed to act principally by inhibiting the conversion of cytidine to deoxytidine, thus inhibiting DNA synthesis. But recent data suggest that effects upon DNA polymerase and effects via incorporation into DNA and RNA may well be of equal importance. The author have demonstrated the effect of cytosine arabinoside on the hepatocytes of albino mice treated with ara-C, observing changes in the cytoplasmic organelles of the hepatocytes. A total of 120 healthy male albino mice were divided into the control and ara-C treated groups. The animals of the ara-C group were given 10mg. per kg of body weight of mouse ara-C in physiological saline solution and the animals of control group were given physiological saline solution, intraperitoneally. After an administration of ara-C or physiological saline solution, the animal were killed at. interval of 6, 12, and 24 hours. The specimens, which were obtained from the left anterier lobe of the liver, were stained with uranyl acetate and lead citrate and observed with JEM 100B electron microscope. The results were obtained as follow: A pronounced dilatation, sacculation and fragmentation of the cisterane of rough endoplasmic reticulum with dissociation of membrane bound-ribosomes, disaggregation of free ribosomes in the cytoplasm, proliferation of the smooth endoplasmic reticulum associated with depletion of glycogen paracles, atrophies of Golgi complex, production of numerous lipid droplets, and formation of antophagic vacuoles, multivesicular bodies and residual bodies are recognized in the hepatocytes of ara-C treated mice. Consequently it is suggested that cytosine arabinoside would induce a changes of the cytoplasmic organelles of the hepatocytes in albino mice.

  • PDF

Effect of Herbal Extract on Nicotine Degradation (천연식물 추출물에 대한 니코틴의 분해효과)

  • 박준상;김재수;박준홍;박세정;조한성;홍억기
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.239-242
    • /
    • 2003
  • To develop a nicotine-degrading material (NDM), the natural herbal extract was studied. For the in vitro verification, the herbal extract was mixed into the dilute nicotine solution and the ability of NDM to degrade nicotine into cotinine was measured spectrophotometically. In the in vivo study, the rats in experimental and control groups were orally fed with the herbal extract and water, respectively, for 2 weeks. And then, 3 ㎎/㎏ nicotine was administered to both groups by intraperitoneal injection. In results, the ability of NDM to degrade nicotine into cotinine was shown 2.5 fold higher after 90 min reaction in comparison with the control group. In addition, a decrease of 33% in nicotine concentration and a increase of 57% in cotinine concentration were shown in rat blood. Therefore, NDM was shown to be effective in the conversion of nicotine into cotinine.

Atypical formations of gintonin lysophosphatidic acids as new materials and their beneficial effects on degenerative diseases

  • Ji-Hun Kim;Ra Mi Lee;Hyo-Bin Oh;Tae-Young Kim;Hyewhon Rhim;Yoon Kyung Choi;Jong-Hoon Kim;Seikwan Oh;Do-Geun Kim;Ik-Hyun Cho;Seung-Yeol Nah
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Fresh ginseng is prone to spoilage due to its high moisture content. For long-term storage, most fresh ginsengs are dried to white ginseng (WG) or steamed for hours at high temperature/pressure and dried to form Korean Red ginseng (KRG). They are further processed for ginseng products when subjected to hot water extraction/concentration under pressure. These WG or KRG preparation processes affect ginsenoside compositions and also other ginseng components, probably during treatments like steaming and drying, to form diverse bioactive phospholipids. It is known that ginseng contains high amounts of gintonin lysophosphatidic acids (LPAs). LPAs are simple lipid-derived growth factors in animals and humans and act as exogenous ligands of six GTP-binding-protein coupled LPA receptor subtypes. LPAs play diverse roles ranging from brain development to hair growth in animals and humans. LPA-mediated signaling pathways involve various GTP-binding proteins to regulate downstream pathways like [Ca2+]i transient induction. Recent studies have shown that gintonin exhibits anti-Alzheimer's disease and antiarthritis effects in vitro and in vivo mediated by gintonin LPAs, the active ingredients of gintonin, a ginseng-derived neurotrophin. However, little is known about how gintonin LPAs are formed in high amounts in ginseng compared to other herbs. This review introduces atypical or non-enzymatic pathways under the conversion of ginseng phospholipids into gintonin LPAs during steaming and extraction/concentration processes, which exert beneficial effects against degenerative diseases, including Alzheimer's disease and arthritis in animals and humans via LPA receptors.

Effects of Methanol Extract of Stachys sieboldii MIQ on Acetylcholine Esterase and Monoamine Oxidase in Rat Brain (초석잠 메탄올 추출물의 Acetylcholine Esterase 및 Monoamine Oxidase 활성 억제 효과)

  • Ryu Beung-Ho;Kim Seoun-Ok
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.4
    • /
    • pp.347-355
    • /
    • 2004
  • This study was undertaken in order to evaluate effects of methanol extracts of Stachys sieboldii MIQ and its related enzyme activities in brain tissues of rats. Sprague-Dawley(SD) male rats were fed within a control group, which is a basic diet group. The experimental diet group was given 100 and 200 mg/kg to supervise 100 and 200 mg/kg body weight per day for 20 days. Lipid peroxide levels and acetylcholine esterase activity in brain tissues were slightly decreased at a dose dependent manner, in vitro. Lipid peroxide levels were also decreased at a dose dependent manner; methanolic extracts of Stachys sieboldii MIQ demonstrated significant inhibitory effects, in vivo. Monoamine oxidase and xanthine oxidase activities were significantly inhibited in the brain tissues of experimental group compared to control group and the ratio of type conversion of xanthine oxidase were decreased.