Effects of Methanol Extract of Stachys sieboldii MIQ on Acetylcholine Esterase and Monoamine Oxidase in Rat Brain

초석잠 메탄올 추출물의 Acetylcholine Esterase 및 Monoamine Oxidase 활성 억제 효과

  • 류병호 (경성대학교 식품공학과) ;
  • 김선옥 (경성대학교 식품공학과)
  • Published : 2004.12.01

Abstract

This study was undertaken in order to evaluate effects of methanol extracts of Stachys sieboldii MIQ and its related enzyme activities in brain tissues of rats. Sprague-Dawley(SD) male rats were fed within a control group, which is a basic diet group. The experimental diet group was given 100 and 200 mg/kg to supervise 100 and 200 mg/kg body weight per day for 20 days. Lipid peroxide levels and acetylcholine esterase activity in brain tissues were slightly decreased at a dose dependent manner, in vitro. Lipid peroxide levels were also decreased at a dose dependent manner; methanolic extracts of Stachys sieboldii MIQ demonstrated significant inhibitory effects, in vivo. Monoamine oxidase and xanthine oxidase activities were significantly inhibited in the brain tissues of experimental group compared to control group and the ratio of type conversion of xanthine oxidase were decreased.

초석잠 메탄올 추출물이 뇌신경전달물질과 관련이 있는 acetylcholine esterase, monoamine oxidase 및 xanthine oxidase의 활성억제효과에 대하여 실험하였다. 실험관내에서 초석잠 추출물을 각각 100 및 200mg/kg씩 첨가한 다음 실험한 결과 첨가농도가 증가할수록 과산화지질의 생성을 억제하여 용량 의존형으로 나타났다. 쥐를 대상으로 20일간 투여한 동물실험에서는 초석잠 추출물 100 mg/kg을 식이에 혼합하여 투여한 결과 지질 과산화의 생성을 억제하였다. Acetylcholine esterase의 활성의 경우 초석잠 추출물을 100 mg/kg 투여한 결과 대조군에 비하여 효소활성이 23.11%로 억제되었고, monoamine oxidase 및 xanthine oxidase 활성이 각각 21.93% 및 63.58%로 억제되었다. 그리고 초석잠 추출물을 100 mg/kg을 투여한 경우 xanthine dehydrogenase로부터 xanthine oxidase로의 형전환비율은 28%로 현저하게 억제되었다. 또한, Xanthine dehydrogenase로부터 oxidase로의 형전환비율을 실험한 결과 정상상태에 비하여 억제됨을 알 수 있었다.

Keywords

References

  1. Roth, ME. Advances in Alzheimer's disease, Journal of Family Practice 37(6):593-607. 1993
  2. Katzman, R. Alzheimer disease. New Eng. J Med., 3/4, 964-973. 1956
  3. Jom, AF, Korten, AE and Henderson, AS. The prevalence of dementia, A quantitative integration of the literature. Acta. Psychiat. Scard. 76:465-479. 1986 https://doi.org/10.1111/j.1600-0447.1987.tb02906.x
  4. Kim, BG, Hyun, KC, Kim, JW and Whang, WW. A clinical study on the effects of oriental medical treatment on Dementia of Alzheimer type. J Orient. Neuropsychiat. 9:25-43. 1995
  5. Cuello, Ae. Progress in brain research(vol. 98) Cholinergic function and dysfunction. Amsterdam, Elsevier, pp. 416-417. 1993
  6. Jorn, AF, Korten, AE and Henderson, AS. The prevalence of dementia: A quantitative integration of the literature. Acta Psychiat Scand 76:465-479. 1987 https://doi.org/10.1111/j.1600-0447.1987.tb02906.x
  7. Henderson, AS. The risk factors for Alzheimer's disease ; a review and a hypothesis. Acta. Psychiat. Scand. 78:257-275. 1988 https://doi.org/10.1111/j.1600-0447.1988.tb06336.x
  8. Richter, JA, Perry, EK and Tomlinsom, BE. Acetylcholine and choline levels in postmortem human brain tissue. Preliminary observation in Alzheimer's disease. Life Sci. 25: 1683-1689. 1980 https://doi.org/10.1016/0024-3205(80)90176-9
  9. Birks, SI and Maclntosh, Fe. Acetylcholine metabolism of synapathetic ganglior. Can. J Biochem. Physiol. 39:787-827. 1961 https://doi.org/10.1139/o61-081
  10. Hallak, M and Giacobini, EA. Comparison of the effects of two inhibitiors on brain cholinesterase. Neuropharmacol. 26(6):521-530. 1987 https://doi.org/10.1016/0028-3908(87)90143-2
  11. Perry, EK, Perry, RH, Blessed, G and Tomlinson, BE. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet. 1:8004:189. 1977
  12. Bowen, DM, Benton, JS, Spillane, JA, Smith, CC and Allen, SJ. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol. Sci. 57(2-3): 191-2024. 1982 https://doi.org/10.1016/0022-510X(82)90026-0
  13. Camps, P, Cusack, B, Mallender, WD, Achab, RE, Morral, J, Munoz-Torrero, D and Rosenberry, TL. Huprine X is a novel high-affinity inhibitor of acetylcholinesterase that is of interest for treament of Alzheimer's disease. Mol. Pharmacol. 57(2):409-17. 2000
  14. Kalaria, RN, Mitchell, MJ and Harik, S. Correlation of I-methyl-4-phenyl-l,2,3,6-tetrahydro-pyridine neurotoxicity with blood-brain barrier monoamine oxidase activity. Proc. Natl. Acad Sci. 84:3521- 3525. 1987 https://doi.org/10.1073/pnas.84.10.3521
  15. Kopin, IJ. Metabolic degradation of catecholamines. The relative importance of different pathways under physiological conditions and after administration of drugs. In, catecholamines. (Blachk, H and Muscholl E. eds.) Handbuch der Experiment ellen Pharmakologie. Springer-Verlag., Berlin, 33:271-282. 1972
  16. Harotani, N, Nomura, J, Kitayama, J. Changes of brain monoamines in the animal model for depression. In. Psychoneuroendocrine dysfimtion, (Shah, NS and Donald AG Eds) Plenum medical Book Compo 331-342. 1984
  17. Bartus, RT, Dean, RL 3rd, Beer, B and Lippa, AS. The cholinergic hypothesis of geriatric memory dysfimction. Science 217(4558) : 408-14. 1982 https://doi.org/10.1126/science.7046051
  18. Muramoto, O, Sugishita, M, Sugita, Hand Toyokura, Y. Effect of physostigmine on constructional and memory tasks in Alzheimer's disease. Arch Neurol. 36(8):501-3. 1979 https://doi.org/10.1001/archneur.1979.00500440071014
  19. Galdzicki, Z, Fukuyama, R, Wadhwani, K, Rapoport, SI and Ehrenstein, G. Beta-amyloid increases choline conductance of PC12 cells: possible mechanism of toxicity in Alzheimer's disease, Brain Res. 646: 332-336. 1994 https://doi.org/10.1016/0006-8993(94)90101-5
  20. Yamahara, G. Studies on the Stachys sieboldii MIQ. Med Mega. 110:932-935. 1990
  21. Ryu, BH and Park, BG. Antimicrobial activity of hexane extract of Stachys sieboldii MIQ leaf. Korea J Life Sci. 12(6):803-811. 2002 https://doi.org/10.5352/JLS.2002.12.6.803
  22. Ryu, BH, Park, BG and Song, SK. Antitumor effects of the hexane extract of Stachys sieboldii MIQ. Korea J Life Sci. 17(6):520-523. 2002
  23. Baek, HS, Na, YS, Ryu, BH and Song, SK. Antioxidant activities of Stachys sieboldii MIQ Stalks. Korean. J Biotechnol. Bioeng. 18(4):266-271. 2003
  24. Ohkawa, H, Ohishi, N and Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351-358. 1956 https://doi.org/10.1016/0003-2697(79)90738-3
  25. Ellman, HL. Tissue Sulfhydryl group. Arch. Biochem. Biophys. 82:70-77. 1959
  26. Galgani, F, Bocquene, G and Cadiou, Y. Evidence of variation of cholinesterase activity in fishes along a pollution gradient in the north sea. Mar. Ecol. Prog. Ser. 19: 1-6. 1992
  27. Hallak, M and Giacobini, EA. Comparison of the effects of two inhibitors on brain cholinesterase. Neuropharmacol. 26(6):521-530. 1987 https://doi.org/10.1016/0028-3908(87)90143-2
  28. Nagatsu, T and Yaki, KA. A simple of monoamine oxidase and D-amino acid oxidase by measuring ammonia. J Biochem. 60:219-221. 1966
  29. Stirpe, F and Della Corte, E. The regulation of rat liver xanthine oxidase : Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol. Chem. 244:3855-3863. 1969
  30. Lowry, OH, Roseborough, NJ, Farr, LA and Randall, RJ. Protein measurement with the Folin-Phenol reagent. J Biol. Chem. 193:265-275. 1951
  31. Steel, RGD and Torrie, JH. Principle and procedures of statistics. New York. 1960
  32. Hatotani, N, Nomura, J and Kitayama, J. Changes of brain monoamines in the animal model for depression, In Psychoneuroendocrine dysfimction. ed. by Shah N S and Donald AG 33:1-342, Plenum medical Book Co. 1984
  33. Cross, CE, Halsiwell, B, Borish, ET, Pryor, WA, Saul, RL, Maccord, JM and Herman, D. Oxygen radicals and human disease., Ann. Intern. Med. 107 (4):526-545. 1987 https://doi.org/10.7326/0003-4819-107-4-526