• Title/Summary/Keyword: impurity removal

Search Result 64, Processing Time 0.023 seconds

Recovery Process for the Recycling of Waste Carbon Black

  • Lee, Sungoh;Nampyo Kook;Tam Tran;Bangsup Shin;Kim, Myongjun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.215-219
    • /
    • 2001
  • Impurities removal from waste carbon black was carried out to produce high-grade carbon black. A lot of hydrophilic carbon black is produced as a byproduct of the hydrogen production process by flame decomposition of water. Due to its impurity content such as sulphur, iron, ash and etc., it can only be used as low-grade carbon or burnt out. High-grade hydrophilic carbon black is 3-5 times more expensive than oil-based carbon black because of its process difficulties and requires pollutant treatment. Hydrophilic carbon is normally used far conductive materials for batteries, pigment for plastics, electric wire covering, additives for rubber, etc.. In these applications, hydrophilic carbon must maintain its high purity. In this study magnetic separation, froth flotation and ultrasonic treatment were employed to remove impurities from the low-grade hydrophilic carbon black. As results, the ash, iron and sulphur content of product decreased to less than 0.01wt.%, 0.0lwt.% and 0.3wt.% respectively, and the surface area of product was about 930 $m^2$/g.

  • PDF

Removal of impurity in rare earth solution with Karr Column (Karr column 추출기에 의한 희토류 용액중 불순물(Fe) 제거)

  • Lee, Jin-Young;Eom, Hyoung-Choon;Park, Kae-Sung;Kim, Jun-Soo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.105-109
    • /
    • 2006
  • 본 연구는 Karr column을 이용하여 희토류 염화물 수용액상에서 비희토성분인 철의 분리에 대한 기초 연구로서, 아민계 추출제인 Alamine336을 이용하여 염화물 수용액상에서 유기상의 농도, 염소이온 농도, 염산 농도에 따른 철 성분의 분리특성을 파악 하였다. Batch 실험결과 추출제 농도가 증가함에 따라 철성분 제거율이 급격히 상승하였으며, 염산 및 염소이온 농도의 경우도 유사한 결과를 나타내었다. Batch 실험을통해 확인된 불순물(Fe)을 추출하기위한 최적 조건은 염산농도 2M, 추출제 농도 0.1M, 상비 1, 추출시간 30분으로서, 이때 희토류 염화물 수용액상의 철 성분 함량은 0.7ppm 이하로서 제거율은 99.9%였다. 또한 최적의 batch 실험조건에서 반응시간(=체류시간)을 변화시키며 실험한 결과, 반응시간 60분의 조건에서 batch 실험과 유사한 결과를 얻을 수 있었다.

  • PDF

A Study on Separation of Naphthalene from Naphthalene and 2-Methylnaphthalene Mixture by Melt and Solution Crystallization (용액과 용융결정화에 의한 나프탈렌과 2-메틸나프탈렌 혼합물로부터 나프탈렌의 분리에 관한 연구)

  • Kim, Sung-Il;Jeong, Kwang-Eun;Chae, Ho-Jeong;Jeong, Soon-Yong;Kim, Chul-Ung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.232-239
    • /
    • 2008
  • Separation of naphthalene from naphthalene and 2-methylnaphthalene mixture has been studied by layered melt and solution crystallization using ethylalcohol. Purity and yield of naphthalene depended mainly on the cooling rate: The effective distribution coefficient ($K_{eff}$) as the degree of impurity removal was observed to decrease with the decreasing in cooling rate. Purity of naphthalene can be enhanced to $5{\sim}7%$ by melt crystallization using 90% naphthalene and the purity of naphthalene can be obtained to be 99% up by solution crystallization.

Scaling up Hydrothermal Synthesis of Na-A Type Zeolite from Natural Siliceous Mudstone and Its Heavy Metal Adsorption Behavior (규질 이암으로부터 Na-A형 제올라이트의 scale-up 수열합성 및 중금속흡착)

  • Bae, In-Kook;Jang, Young-Nam;Shin, Hee-Young;Chae, Soo-Chun;Ryu, Kyoung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.341-347
    • /
    • 2008
  • The feasibility of commercializing the hydrothermal synthesis of Na-A type zeolite from siliceous mudstone has been conducted using a 50-liter bench-scale autoclave and the application of the zeolite as an environmental remediation agent. Siliceous mudstone, which is widely distributed around the Pohang area, was adopted as a precursor. The siliceous mudstone is favorable for the synthesis of zeolite because it contains 70.7% $SiO_2$ and 10.0% $Al_2O_3$, which are major ingredient of zeolite formation. The synthesis of zeolite was carried out under the following conditions that had been obtained from the previous laboratory-scale tests: 10hr reaction time, $80^{\circ}C$ reaction temperature, $Na_2O/SiO_2$ ratio = 0.6, $SiO_2/Al_2O_3$ ratio = 2.0 and $H_2O/Na_2O$ ratio= 98.6. The crystallinity and morphology of the zeolite formed were similar to those obtained from the laboratory-scale tests. The recovery and cation exchange ion capacity were 95% and 215 cmol/kg, respectively, which are slightly higher than those obtained in laboratory scale tests. To examine the feasibility of the zeolite as an environmental remediation agent, experiments for heavy metal adsorption to zeolite were conducted. Its removal efficiencies of heavy metals in simulated waste solutions decreased in the following sequences: Pb > Cd > Cu = Zn > Mn. In a solution of 1500 mg/L total impurity metals, the removal efficiencies for these impurity metals were near completion (> 99%) except for Mn whose efficiency was 98%. Therefore, the synthetic Na-A type zeolite was proven to be a strong absorbent effective for removing heavy metals.

The Efficiency of Fe Removal for Pyrophyllite by Ammonia Leaching Solution, and Their Dissolution Kinetics (암모니아 용출용액을 이용한 저 품위 엽납석으로부터 Fe 제거 효율과 용해 동역학)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • In order to remove Fe impurity from low-grade pyrophyllite ore, the effect of certain variables such as particle size, concentration of sulfuric acid, amount of ammonium sulfate, added hydrogen peroxide, and temperature were studied. The euhedral cubic pyrites were observed in the low-grade pyrophyllite ore by reflected light microscopy, and quartz and dickite were identified in the sample by XRD analysis. The results of the Fe removal experiments showed that the best Fe removal parameters were when the particle size was at -325 mesh, the addition of $H_2SO_4$, $(NH_4)_2SO_4$ and $H_2O_2$ was at a 2.0 M, 10.0 g/l, and 3.0 M concentration, respectively, and at a $70^{\circ}C$ leaching temperature. In the dissolution kinetics analysis, the dissolution of Fe from the pyrite surface was a controlled chemical reaction, and the Fe dissolution reaction was proportioned to 0.066/R, $[H_2SO_4]^{1.156}$, $[(NH_4)_2SO_4]^{0.745}$, $[H_2O_2]^{0.428}$.

Effects of Pretreatment of Alkali-degreasing Solution for Cu Seed Layer (약알칼리탈지 용액에서의 구리 Seed 층의 전처리 효과)

  • Lee, Youn-Seoung;Kim, Sung-Soo;Rha, Sa-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2012
  • In order to understand a process of contaminants removal on surface of Cu seed layer (Cu seed/Ti/Si) by sputter deposition, we investigated the changed morphology and states of Cu seed surface after pretreatment in alkali degreasing Metex TS-40A solution according to dipping time. After TS-40A pretreatment, the surface morphology with clearer grains was observed by Field emission scanning electron microscope and the changed surface chemical states and impurities on surface of samples were checked by X-ray photoelectron spectroscopy. Dipping time in TS-40A solution had very little effect on surface of Cu seed layer. After pretreatment, much carbons and little oxygens on surface of Cu seed were eliminated and the decrease of peaks corresponded to O=C and $Cu(OH)_2$ was estimated. However, Si content (=silicate) was detected on sample surface. We think that the silicate impurity forms on Cu seed by chemical reaction of TS-40A solution included silicate component. By pretreatment of alkali degreasing Metex TS-40A solution, it showed an excellent effect in removal of O=C and $Cu(OH)_2$ on Cu seed layer, but the silicate was formed on surface of Cu seed. Therefore, another cleaning process such as acid cleaning is required for removal of this silicate in use of this alkali degreasing.

Purification of p-Dioxanone from p-Dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization (경막형 용융결정화에 의한 파라디옥사논과 디에틸렌글리콜 혼합물로부터 파라디옥사논의 정제)

  • Kim, Sung-Il;Kim, Chul-Ung;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.595-602
    • /
    • 2005
  • In order to purify diethylene glycol as main impurity included in p-dioxanone, SLE (solid-liquid equilibria) and mixture density on two components system of p-dioxanone and diethylene glycol were measured and a layered melt crystallization with seed has been applied. The SLE of p-dioxanone and diethylene glycol were a simple eutectic system and the temperature and PDX concentration at eutectic point were 0.08 and 246 K, respectively. Densities of their binary mixtures were well fitted by the best correlation equation, ${\rho}_l=0.405+1.361x+0.002T-0.004xT$. In the melt crystallization, the growth rate (G) was proportional to the 1.5th power of the subcooling degree. The effective distribution coefficient ($K_{eff}$) as the degree of impurity removal was observed to increase with increasing the growth rate and initial p-dioxanone concentration. And also, $K_{eff}$ was correlated with Z function using Wintermantel's model such as $K_{eef}=-0.0604+6.392{\times}Z$. Finally, PDX purity through the optimization of this process can be obtained over 99%.

Preparation of Mullite Precursor Using Silicic Acid Extracted by Tetrahydrofuran from Sodium Silicate (규산나트륨으로부터 Tetrahydrofuran으로 추출된 규산을 이용한 Mullite 전구체 제조)

  • 노재성;홍성수;이범재;이병기;박은희;정홍호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.915-920
    • /
    • 1996
  • Fine mullite precursor was prepared by colloidal sol-gel processes. Aluminum isopropoxide $[Al(i-OC_3H_7)_3]$ as a starting material of $Al_2O_3$ and silicic acid extracted by THF from sodium silicate as a starting material of $SiO_2$ were used. Sodium silicate was first acidified by dilute sulfuric acid to form silicic acid. ; followed by extraction using THF, Mullite precursor was synthesized by sol-gel processes from aluminum isopropoxide and sillicic acid considering the degree of extraction of Si and the removal efficiency of Na. The impurity content of silicic acid extracted by THF was below 0.04% Synthetic mullite precursor consisted of $3Al_2O_3{\cdot}2SiO_2$ and showd spherical particles of $0.05{\mu}m$ diameter and below 0.462% of impurites. The mullite precursor was characterized by EDS, XRD, TG/DSC SEM, FT-IR spectroscopy ICP and TEM.

  • PDF

Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids (유기산에 의한 인듐스크랩에서 고순도 인듐옥살산염의 제조)

  • Koo, Su-Jin;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.661-665
    • /
    • 2013
  • Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, $80^{\circ}C$, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination.

The Analysis on the Activation Procedure of Polymer Electrolyte Fuel Cells

  • Jang, Jong-Mun;Park, Gu-Gon;Sohn, Young-Jun;Yim, Sung-Dae;Kim, Chang-Soo;Yang, Tae-Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.131-135
    • /
    • 2011
  • It is, in general, believed that during the activation process, the proton conductivity increases due to wetting effect and the electrochemical resistance reduction, resulting in an increase in the fuel cell performance with time. However, until now, very scant information is available on the understanding of activation processes. In this study, dominant variables that effect on the performance increase of membrane electrode assemblies (MEAs) during the activation process were investigated. Wetting, pore restructuring and active metal utilization were analyzed systematically. Unexpectedly, the changes for both ohmic and reaction resistance characterized by the electrochemical impedance spectroscopy (EIS) after initial wetting process were much smaller when considering the degree of cell performance increases. However, the EIS spectra represents that the pore opening of electrode turns into gas transportable structure more easily. The increase in the performance with activation cycles was also investigated in a view of active metals. Though the particle size was grown, the number of effective active sites might be exposed more. The impurity removal and catalytic activity enhancement measured by cyclic voltammetry (CV) could be a strong evident. The results and analysis revealed that, not merely wetting of membrane but also restructuring of electrodeand catalytic activity increase are important factors for the fast and efficient activation of the polymer electrolyte fuel cells.