DOI QR코드

DOI QR Code

Preparation of High-purity Indium Oxalate Salt from Indium Scrap by Organic Acids

유기산에 의한 인듐스크랩에서 고순도 인듐옥살산염의 제조

  • Koo, Su-Jin (Institute of Defense Science & Technology, Pukyoung National University) ;
  • Ju, Chang-Sik (Department of Chemical Engineering, Pukyoung National University)
  • 구수진 (부경대학교 방위과학기술연구소) ;
  • 주창식 (부경대학교 화학공학과)
  • Received : 2013.07.23
  • Accepted : 2013.10.08
  • Published : 2013.12.01

Abstract

Effect of organic acid on the preparation of indium-oxalate salt from indium scraps generated from ITO glass manufacturing process was studied. Effects of parameters, such as type and concentration of organic acids, pH of reactant, temperature, reaction time on indium-oxalate salt preparation were examined. The impurity removal efficiency was similar for both oxalic acid and citric acid, but citric acid did not make organic acid salt with indium. The optimum conditions were 1.5 M oxalic acid, pH 7, $80^{\circ}C$, and 6 hours. On the other hand, the recoveries increased with pH, but the purity decreased. The indium-oxalate salt purity prepared by two cycles was 99.995% (4N5). The indium-oxalate salt could be converted to indium oxide and indium metal by substitution reaction and calcination.

ITO glass 제조공정에서 발생되는 인듐스크랩으로부터 인듐옥살산염의 제조에서 유기산의 영향을 연구하였다. 유기산의 종류, 농도 그리고 반응액의 pH, 온도, 시간 등을 변화시키면서 인듐옥살산염 제조에 미치는 영향을 조사하였다. 불순물 제거 효율은 구연산 및 옥살산 모두 비슷하였으나 구연산은 인듐과 유기산염을 형성하지 못하였다. 인듐옥살산염 제조의 최적 조건은 옥살산 농도 1.5M, pH 7, 반응온도 $80^{\circ}C$, 반응시간 6시간이었다. 한편, pH가 증가하면 회수율은 증가하지만, 순도는 감소하였다. 2회 반복으로 제조된 인듐옥살산염의 순도는 99.995% (4N5)를 나타내었다. 인듐옥살산염은 치환반응, 소성 등에 의해 인듐금속 및 인듐산화물 등으로 전환할 수 있다.

Keywords

References

  1. Alfantazi, A. M. and Moskalyk, P. R., "Processing of Indium : Areview," Miner. Eng., 16, 687-694(2003). https://doi.org/10.1016/S0892-6875(03)00168-7
  2. Jorgenson, J. D. and Goorge, M. W., "Mineral Commodity Profile-Indium," USGS, 80-81(2005).
  3. Hong, S. J., "Technology Trends and view of the Transparent Electrode Material of the Touch Screen," Electro. Parts & Comp., 12, 70-74(2008).
  4. An. J. H., "Graphene Transperent Electrode," The Kor. Infor. Disp. Soc., 11(5), 33-37(2010).
  5. Kenneth, N. H., "Recovery of Indium from Scrap," J. of Kor. Inst. of Reso. Recy., 10(5), 3-7(2001).
  6. Kenneth, N. H., Kondoju, S., Park, K. W. and Kang, H. M., "Recovery of Indium from Indium/Tin Oxide Scrap by Chemical Precipitation," Geosystem Eng., 5(4), 93-98(2002). https://doi.org/10.1080/12269328.2002.10541193
  7. Barakat, M. K., "Recovery of Lead, Tin and Indium from Alloy Wire Scrap," Hydrometallurgy, 49, 63-73(1998). https://doi.org/10.1016/S0304-386X(98)00003-6
  8. Park, S. K., Roh, Y. M., Lee, S. G., Kim, Y. Shin., C. H. and Ahn, J. W., "Recovery of Acid, Indium and Tin from Waste Solution of ITO Etchant," RIST, 21(4), 352-356(2007).
  9. Paiva, A. P., "Recovery of Indium from Aqueous Solution by Solvent Extraction," Sep. Sci. and Tech., 36(7), 1395-1419(2001). https://doi.org/10.1081/SS-100103878
  10. Kwon, T. N. and Jeon, C., "Selective Adsorption for Induim (III) from Industrial Wastewater Using Chemically Modified Sawdust," Korean J. Chem. Eng., 29(12), 1730-1734(2012). https://doi.org/10.1007/s11814-012-0069-1
  11. Lee, J. C., Shin, D. Y., Pandey, B. D. and Yoo, K. K., "Bio-hydrometallurgy for the Recyling of Metal Resources in Urban Mine: a Review," The Kor. Soc. of Miner. and Ene. Reso. Eng., 48(3), 383-395(2011).
  12. Lee, B. G. and Choi, J. S., "Preparation of Magnesium Oxide Nanowires frm a Magnesium Foil," Appl. Chem. Eng. Res., 45(2), 203-207(2007).
  13. Sung, M. H., Kim, W. S. and Kim, J. S., "Study on Thermal Decomposition and Crystal Structure of Yttrium Oxalate Produced by Reaction Crystallization," J. of the Kor. Inst. of Chem. Eng., 36(4), 510-516(1998).