• Title/Summary/Keyword: implementation algorithm

Search Result 4,233, Processing Time 0.031 seconds

Implementation of Secure System for Blockchain-based Smart Meter Aggregation (블록체인 기반 스마트 미터 집계 보안 시스템 구축)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • As an important basic building block of the smart grid environment, smart meter provides real-time electricity consumption information to the utility. However, ensuring information security and privacy in the smart meter data aggregation process is a non-trivial task. Even though the secure data aggregation for the smart meter has been a lot of attention from both academic and industry researchers in recent years, most of these studies are not secure against internal attackers or cannot provide data integrity. Besides, their computation costs are not satisfactory because the bilinear pairing operation or the hash-to-point operation is performed at the smart meter system. Recently, blockchains or distributed ledgers are an emerging technology that has drawn considerable interest from energy supply firms, startups, technology developers, financial institutions, national governments and the academic community. In particular, blockchains are identified as having the potential to bring significant benefits and innovation for the electricity consumption network. This study suggests a distributed, privacy-preserving, and simple secure smart meter data aggregation system, backed up by Blockchain technology. Smart meter data are aggregated and verified by a hierarchical Merkle tree, in which the consensus protocol is supported by the practical Byzantine fault tolerance algorithm.

FPGA Implementation of a Grant Distribution Algorithm for the MAC in the ATM-PON (ATM-PON에서 MAC을 위한 승인분배 알고리즘의 FPGA 구현)

  • Kim, Tae-Min;Chung, Hae;Shin, Gun-Soon;Kim, Jin-Hee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.10
    • /
    • pp.1-9
    • /
    • 2001
  • The MAC (Medium Access Control) protocol is needed for the OLT(Optical Line Termination) to allocate bandwidth to ONUs(Optical Network Units) and ONTs(Optical Network Terminations) dynamically in the ATM PON(Passive Optical Network). With the protocol, the OLT gathers ONUs' informations and provides grants efficiently to each ONU. Two important functions of the MAC protocol is the grant request procedure and the grant distribution algrithm. The latter has the greatest arithmetic portion in the TC(Transmission Convergence) module, occupies a relatively large portion of the overall chip area, has often been the limiting factor in terms of speed, and should be designed to guarantee the quality of service for various traffics. In this paper, we implement the MAC with the FPGA which can allocate grants dynamically according to the queue length information and the number of active ONUs and distribute grants uniformly to minimize the cell delay variation for each ONU. The structure of the MAC scheduler for the dynamic bandwidth assignment has a programmable look-up table. Also, it has a simple structure, the less chip area, and the lower delay time.

  • PDF

Control Unit Design and Implementation for SIMD Programmable Unified Shader (SIMD 프로그래머블 통합 셰이더를 위한 제어 유닛 설계 및 구현)

  • Kim, Kyeong-Seob;Lee, Yun-Sub;Yu, Byung-Cheol;Jung, Jin-Ha;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.37-47
    • /
    • 2011
  • Real picture like high quality computer graphic is widely used in various fields and shader processor, a key part of a graphic processor, has been advanced to programmable unified shader. However, The existing graphic processors have been optimized to commercial algorithms, so development of an algorithm which is not based on it requires an independent shader processor. In this paper, we have designed and implemented a control unit to support high quality 3 dimensional computer graphic image on programmable integrated shader processor. We have done evaluation through functional level simulation of designed control unit. Hardware resource usage rate are measured by implementing directly on FPGA Virtex-4 and execution speed are verified by applying ASIC library. the result of an evaluation shows that the control unit has the commands more about 1.5 times compared to the other shader processors that is a behavior similar to the control unit and with a number of processing units used in a shader processor, compared with the other processors, overall performance of the control unit is improved about 3.1 GFLOPS.

Implementation of a QoS routing path control based on KREONET OpenFlow Network Test-bed (KREONET OpenFlow 네트워크 테스트베드 기반의 QoS 라우팅 경로 제어 구현)

  • Kim, Seung-Ju;Min, Seok-Hong;Kim, Byung-Chul;Lee, Jae-Yong;Hong, Won-Taek
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.35-46
    • /
    • 2011
  • Future Internet should support more efficient mobility management, flexible traffic engineering and various emerging new services. So, lots of traffic engineering techniques have been suggested and developed, but it's impossible to apply them on the current running commercial Internet. To overcome this problem, OpenFlow protocol was proposed as a technique to control network equipments using network controller with various networking applications. It is a software defined network, so researchers can verify their own traffic engineering techniques by applying them on the controller. In addition, for high-speed packet processing in the OpenFlow network, programmable NetFPGA card with four 1G-interfaces and commercial Procurve OpenFlow switches can be used. In this paper, we implement an OpenFlow test-bed using hardware-accelerated NetFPGA cards and Procurve switches on the KREONET, and implement CSPF (Constraint-based Shortest Path First) algorithm, which is one of popular QoS routing algorithms, and apply it on the large-scale testbed to verify performance and efficiency of multimedia traffic engineering scheme in Future Internet.

Ciphering Scheme and Hardware Implementation for MPEG-based Image/Video Security (DCT-기반 영상/비디오 보안을 위한 암호화 기법 및 하드웨어 구현)

  • Park Sung-Ho;Choi Hyun-Jun;Seo Young-Ho;Kim Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.27-36
    • /
    • 2005
  • This thesis proposed an effective encryption method for the DCT-based image/video contents and made it possible to operate in a high speed by implementing it as an optimized hardware. By considering the increase in the amount of the calculation in the image/video compression, reconstruction and encryption, an partial encryption was performed, in which only the important information (DC and DPCM coefficients) were selected as the data to be encrypted. As the result, the encryption cost decreased when all the original image was encrypted. As the encryption algorithm one of the multi-mode AES, DES, or SEED can be used. The proposed encryption method was implemented in software to be experimented with TM-5 for about 1,000 test images. From the result, it was verified that to induce the original image from the encrypted one is not possible. At that situation, the decrease in compression ratio was only $1.6\%$. The hardware encryption system implemented in Verilog-HDL was synthesized to find the gate-level circuit in the SynopsysTM design compiler with the Hynix $0.25{\mu}m$ CMOS Phantom-cell library. Timing simulation was performed by Verilog-XL from CadenceTM, which resulted in the stable operation in the frequency above 100MHz. Accordingly, the proposed encryption method and the implemented hardware are expected to be effectively used as a good solution for the end-to-end security which is considered as one of the important problems.

An Implementation of Low Power MAC using Improvement of Multiply/Subtract Operation Method and PTL Circuit Design Methodology (승/감산 연산방법의 개선 및 PTL회로설계 기법을 이용한 저전력 MAC의 구현)

  • Sim, Gi-Hak;O, Ik-Gyun;Hong, Sang-Min;Yu, Beom-Seon;Lee, Gi-Yeong;Jo, Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.4
    • /
    • pp.60-70
    • /
    • 2000
  • An 8$\times$8+20-bit MAC is designed with low power design methodologies at each of the system design levels. At algorithm level, a new method for multipl $y_tract operation is proposed, and it saves the transistor counts over conventional methods in hardware realization. A new Booth selector circuit using NMOS pass-transistor logic is also proposed at circuit level. It is superior to other circuits designed by CMOS in power-delay-product. And at architecture level, we adopted an ELM adder that is known to be the most efficient in power consumption, operating frequency, area and design regularity as the final adder. For registers, dynamic CMOS single-edge triggered flip-flops are used because they need less transistors per bit. To increase the operating frequency 2-stage pipeline architecture is adopted, and fast 4:2 compressors are applied in Wallace tree block. As a simulation result, the designed MAC in 0.6${\mu}{\textrm}{m}$ 1-poly 3-metal CMOS process is operated at 200MHz, 3.3V and consumed 35㎽ of power in multiply operation, and operated at 100MHz consuming 29㎽ in MAC operations, respectively.ly.

  • PDF

The Implementation of Digital Neural Network with identical Learning and Testing Phase (학습과 시험과정 일체형 신경회로망의 하드웨어 구현)

  • 박인정;이천우
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.4
    • /
    • pp.78-86
    • /
    • 1999
  • In this paper, a distributed arithmetic digital neural network with learning and testing phase implemented in a body has been studied. The proposed technique is based on the two facts; one is that the weighting coefficients adjusted will be stored in registers without shift, because input values or input patterns are not changed while learning and the other is that the input patterns stored in registers are not changed while testing. The proposed digital neural network is simulated by hardware description language such as VHDL and verified the performance that the neural network was applied to the recognition of seven-segment. To verify proposed neural networks, we compared the learning process of modified perceptron learning algorithm simulated by software with VHDL for 7-segment number recognizer. The results are as follows: There was a little difference in learning time and iteration numbers according to the input pattern, but generally the iteration numbers are 1000 to 10000 and the learning time is 4 to 200$\mu\textrm{s}$. So we knew that the operation of the neural network is learned in the same way with the learning of software simulation, and the proposed neural networks are properly operated. And also the implemented neural network can be built with less amounts of components compared with board system neural network.

  • PDF

Adaptive Buffer and Burst Scheme and Its Characteristics for Energy Saving in Core IP Networks (에너지 절약을 위해 적응적 버퍼링 기법을 이용한 버스트 구성 방법 및 특성)

  • Han, Chimoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.34-42
    • /
    • 2012
  • This paper analyses the energy saving basic power models in core IP networks, and proposes the adaptive buffer and burst scheme which is a possible energy saving method, and its implementation algorithm in core IP networks. Especially this paper describes the adaptive buffer and burst scheme dynamically varying the buffering interval B according to the input traffic volume of ingress router, and explains the operation principle of proposed scheme. This method is to adjust the buffering interval B according to input traffic volume of ingress router, that is increasing the interval B when input traffic volume is low, and decreasing the interval B when input traffic volume is high between some given interval regions. This method can gets the high energy saving effect as decreasing the transition number of idle/active in networks when input traffic volume is low, and decreasing the transition number of idle/active by the continuous of burst packets in transit router when input traffic volume is high. This paper shows the increasing of asleep rate for the energy saving of core IP networks and confirms the energy saving of core IP networks by the computer simulation. We confirmed that proposed method can be save the energy of IP networks by properly trade off network performances.

A design and implementation of Face Detection hardware (얼굴 검출을 위한 SoC 하드웨어 구현 및 검증)

  • Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.43-54
    • /
    • 2007
  • This paper presents design and verification of a face detection hardware for real time application. Face detection algorithm detects rough face position based on already acquired feature parameter data. The hardware is composed of five main modules: Integral Image Calculator, Feature Coordinate Calculator, Feature Difference Calculator, Cascade Calculator, and Window Detection. It also includes on-chip Integral Image memory and Feature Parameter memory. The face detection hardware was verified by using S3C2440A CPU of Samsung Electronics, Virtex4LX100 FPGA of Xilinx, and a CCD Camera module. Our design uses 3,251 LUTs of Xilinx FPGA and takes about 1.96${\sim}$0.13 sec for face detection depending on sliding-window step size, when synthesized for Virtex4LX100 FPGA. When synthesized on Magnachip 0.25um ASIC library, it uses about 410,000 gates (Combinational area about 345,000 gates, Noncombinational area about 65,000 gates) and takes less than 0.5 sec for face realtime detection. This size and performance shows that it is adequate to use for embedded system applications. It has been fabricated as a real chip as a part of XF1201 chip and proven to work.

Implementation of Smart Metering System Based on Deep Learning (딥 러닝 기반 스마트 미터기 구현)

  • Sun, Young Ghyu;Kim, Soo Hyun;Lee, Dong Gu;Park, Sang Hoo;Sim, Issac;Hwang, Yu Min;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.829-835
    • /
    • 2018
  • Recently, studies have been actively conducted to reduce spare power that is unnecessarily generated or wasted in existing power systems and to improve energy use efficiency. In this study, smart meter, which is one of the element technologies of smart grid, is implemented to improve the efficiency of energy use by controlling power of electric devices, and predicting trends of energy usage based on deep learning. We propose and develop an algorithm that controls the power of the electric devices by comparing the predicted power consumption with the real-time power consumption. To verify the performance of the proposed smart meter based on the deep running, we constructed the actual power consumption environment and obtained the power usage data in real time, and predicted the power consumption based on the deep learning model. We confirmed that the unnecessary power consumption can be reduced and the energy use efficiency increases through the proposed deep learning-based smart meter.