• Title/Summary/Keyword: implementation algorithm

Search Result 4,233, Processing Time 0.032 seconds

Implementation of an Image-based Korean Beef Grade Discrimination Automation Algorithm (이미지 기반 한우 등급 판별 자동화 알고리즘 구현)

  • Minji Kim;Junseok Oh;Eunchae Jeon;Yonghyun Kwon;YoungGyun Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.444-446
    • /
    • 2024
  • 한국의 육류 소비량이 늘어감에 따라 한우의 수요 및 공급도 점차 늘어가고 있다. 한우는 육질 등급(QG)과 육량 등급(YG)으로 나누어 판별되며 근내지방도, 고기 색, 지방색, 조직감, 성숙도, 도체 중량, 배최장근 단면적, 등지방두께 등 여러 항목을 고려한다. 현재는 주로 등배근을 맨눈으로 확인하는 수동 판별 방식이 사용된다. 하지만 평가사가 정확하게 판단하기 어렵고, 작업자의 부주의로 인한 육류의 오염 등 시간과 비용의 문제점이 있다. 본 연구에서는 이러한 문제점들을 한우 등급 판별 자동화로 해결하기 위해 한우의 등심 단면 이미지를 활용하여 등배근의 근내지방도를 산출하고 한우 등급을 자동 판별하는 알고리즘을 구현하였으며 평균 정확도는 79.2%를 달성하였다.

Real-time 3D Object Perception Algorithm Implementation for Autonomous Driving Robots at Construction Sites (건설 현장을 위한 자율주행 로봇의 실시간 3D 객체 인지 알고리즘 구현)

  • Ji-Ye Choi;In-Gu Choi;Hyeong-Keun Hong;Jae-Wook Jeon
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.11-12
    • /
    • 2024
  • 건설 현장에서 자율주행 로봇의 안전한 주행을 위해 동적 장애물의 정확한 인식 및 추적이 중요하다. 본 논문에서는 실시간 3D 객체 인식 및 추적을 위한 방법을 제안한다. Complex-YOLOv4 모델을 이용한 객체 인식, SORT 알고리즘 확장을 통한 객체 추적을 구현하였다. Jetson AGX Orin 보드의 ROS2 환경에서 시스템을 구축하여, 실시간 3D 객체 인식 및 추적이 가능함을 확인하였다.

New Tree Routing Protocol with Adaptive Metrics Based on Hop Count

  • BeomKyu Suh;Ismatov Akobir;Ki-Il Kim
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.207-214
    • /
    • 2024
  • In wireless sensor networks, the implementation of routing protocols is crucial owing to their limited computational capacities. Tree routing is a suitable method in wireless sensors owing to its minimal routing overhead. However, single-hop metric schemes, such as hop count, cause congestion at specific nodes, whereas multiple metric schemes cannot control dynamically changing network environments. To address these issues, we propose a scheme to implement enhanced tree routing with adaptive metrics based on hop count. This approach assigns different weights to metrics to select suitable parent nodes based on hop count. The parent-selection algorithm utilizes hop count, buffer occupancy, and received signal strength indicator (RSSI) as metrics. This study evaluates the performance through simulation scenarios to analyze whether improvements can be made to address problems encountered in traditional tree routing. The performance metrics include packet delivery speed, throughput, and end-to-end delay, which vary depending on the volume of network traffic.

Machine Learning Based Asset Risk Management for Highway Sign Support Systems

  • Myungjin CHAE;Jiyong CHOI
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.145-151
    • /
    • 2024
  • Road sign support systems are not usually well managed because bridges and pavement have budget and maintenance priority while the sign boards and sign supports are considered as miscellaneous items. The authors of this paper suggested the implementation of simplified machine learning algorithms for asset risk management in highway sign support systems. By harnessing historical and real-time data, machine learning models can forecast potential vulnerabilities, enabling early intervention and proactive maintenance protocols. The raw data were collected from the Connecticut Department of Transportation (CTDOT) asset management database that includes asset ages, repair history, installation and repair costs, and other administrative information. While there are many advanced and complicated structural deterioration prediction models, a simple deterioration curve is assumed, and prediction model has been developed using machine learning algorithm to determine the risk assessment and prediction. The integration of simplified machine learning in asset risk management for highway sign support systems not only enables predictive maintenance but also optimizes resource allocation. This approach ensures that decision-makers are not inundated with excessive detailed information, making it particularly practical for industry application.

Isolated dark-matter-deprived galaxies in hydrodynamical simulations: real objects or artefacts?

  • Christoph Saulder;Owain Snaith;Changbom Park;Clotilde Laigle
    • Monthly Notices of the Royal Astronomical Society
    • /
    • v.491 no.1
    • /
    • pp.1278-1286
    • /
    • 2020
  • We searched for isolated dark-matter-deprived galaxies within several state-of-the-art hydrodynamical simulations: Illustris, IllustrisTNG, EAGLE, and Horizon-AGN and found a handful of promising objects in all except Horizon-AGN. While our initial goal was to study their properties and evolution, we quickly noticed that all of them were located at the edge of their respective simulation boxes. After carefully investigating these objects using the full particle data, we concluded that they are not merely caused by a problem with the algorithm identifying bound structures. We provide strong evidence that these oddballs were created from regular galaxies that get torn apart due to unphysical processes when crossing the edge of the simulation box. We show that these objects are smoking guns indicating an issue with the implementation of the periodic boundary conditions of the particle data in Illustris, IllustrisTNG, and EAGLE, which was eventually traced down to be a minor bug occurring for a very rare set of conditions.

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF

Design and Implementation of Low-power Neuromodulation S/W based on MSP430 (MSP430 기반 저전력 뇌 신경자극기 S/W 설계 및 구현)

  • Hong, Sangpyo;Quan, Cheng-Hao;Shim, Hyun-Min;Lee, Sangmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.110-120
    • /
    • 2016
  • A power-efficient neuromodulator is needed for implantable systems. In spite of their stimulation signal's simplicity of wave shape and waiting time of MCU(micro controller unit) much longer than execution time, there is no consideration for low-power design. In this paper, we propose a novel of low-power algorithm based on the characteristics of stimulation signals. Then, we designed and implement a neuromodulation software that we call NMS(neuro modulation simulation). In order to implement low-power algorithm, first, we analyze running time of every function in existing NMS. Then, we calculate execution time and waiting time for these functions. Subsequently, we estimate the transition time between active mode (AM) and low-power mode (LPM). By using these results, we redesign the architecture of NMS in the proposed low-power algorithm: a stimulation signal divided into a number of segments by using characteristics of the signal from which AM or LPM segments are defined for determining the MCU power reduces to turn off or not. Our experimental results indicate that NMS with low-power algorithm reducing current consumption of MCU by 76.31 percent compared to NMS without low-power algorithm.

A license plate area segmentation algorithm using statistical processing on color and edge information (색상과 에지에 대한 통계 처리를 이용한 번호판 영역 분할 알고리즘)

  • Seok Jung-Chul;Kim Ku-Jin;Baek Nak-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.353-360
    • /
    • 2006
  • This paper presents a robust algorithm for segmenting a vehicle license plate area from a road image. We consider the features of license plates in three aspects : 1) edges due to the characters in the plate, 2) colors in the plate, and 3) geometric properties of the plate. In the preprocessing step, we compute the thresholds based on each feature to decide whether a pixel is inside a plate or not. A statistical approach is applied to the sample images to compute the thresholds. For a given road image, our algorithm binarizes it by using the thresholds. Then, we select three candidate regions to be a plate by searching the binary image with a moving window. The plate area is selected among the candidates with simple heuristics. This algorithm robustly detects the plate against the transformation or the difference of color intensity of the plate in the input image. Moreover, the preprocessing step requires only a small number of sample images for the statistical processing. The experimental results show that the algorithm has 97.8% of successful segmentation of the plate from 228 input images. Our prototype implementation shows average processing time of 0.676 seconds per image for a set of $1280{\times}960$ images, executed on a 3GHz Pentium4 PC with 512M byte memory.

Time Domain of Algorithm for The Detection of Freezing of Gait(FOG) in Patients with Parkinson's Disease (파킨슨병 환자의 보행동결 검출을 위한 시간영역 알고리즘)

  • Park, S.H.;Kwon, Y.R.;Kim, J.W.;Eom, G.M.;Lee, J.H.;Lee, J.W.;Lee, S.M.;Koh, S.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.182-188
    • /
    • 2013
  • This study aims to develop a practical algorithm which can detect freezing of gait(FOG) in patients with Parkinson's disease(PD). Eighteen PD patients($68.8{\pm}11.1yrs.$) participated in this study, and three($68.7{\pm}4.0yrs.$) of them showed FOG. We suggested two time-domain algorithms(with 1-axis or 3-axes acceleration signals) and compared them with the frequency-domain algorithm in the literature. We measured the acceleration of left foot with a 3-axis accelerometer inserted at the insole of a shoe. In the time-domain method, the root-mean-square(RMS) acceleration was calculated in a moving window of 4s and FOG was defined as the periods during which RMS accelerations located within FOG range. The parameters in each algorithm were optimized for each subject using the simulated annealing method. The sensitivity and specificity were same, i.e., $89{\pm}8%$ for the time-domain method with 1-axis acceleration and were $91{\pm}7%$ and $90{\pm}8%$ for the time-domain method with 3-axes acceleration, respectively. Both performances were better in the time-domain methods than in the frequency-domain method although the results were statistically insignificant. The amount of calculation in the time-domain method was much smaller than in the frequency-domain method. Therefore it is expected that the suggested time domain algorithm would be advantageous in the systematic implementation of FOG detection.

Efficiency Evaluation of Genetic Algorithm Considering Building Block Hypothesis for Water Pipe Optimal Design Problems (상수관로 최적설계 문제에 있어 빌딩블록가설을 고려한 유전 알고리즘의 효율성 평가)

  • Lim, Seung Hyun;Lee, Chan Wook;Hong, Sung Jin;Yoo, Do Guen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.294-302
    • /
    • 2020
  • In a genetic algorithm, computer simulations are performed based on the natural evolution process of life, such as selection, crossover, and mutation. The genetic algorithm searches the approximate optimal solution by the parallel arrangement of Schema, which has a short definition length, low order, and high adaptability. This study examined the possibility of improving the efficiency of the optimal solution by considering the characteristics of the building block hypothesis, which are one of the key operating principles of a genetic algorithm. This study evaluated the efficiency of the optimization results according to the gene sequence for the implementation in solving problems. The optimal design problem of the water pipe was selected, and the genetic arrangement order reflected the engineering specificity by dividing into the existing, the network topology-based, and the flowrate-based arrangement. The optimization results with a flowrate-based arrangement were, on average, approximately 2-3% better than the other batches. This means that to increase the efficiency of the actual engineering optimization problem, a methodology that utilizes clear prior knowledge (such as hydraulic properties) to prevent such excellent solution characteristics from disappearing is essential. The proposed method will be considered as a tool to improve the efficiency of large-scale water supply network optimization in the future.