• Title/Summary/Keyword: impedance characteristics

Search Result 1,741, Processing Time 0.025 seconds

Analysis on SFCL's Impedance for Protective Coordination in Large Transformer installed in Distribution Substation (배전변전소에 대용량변압기로 교체 적용시 보호협조를 위한 초전도 전류제한기의 임피던스 분석)

  • Kim, Jin-Seok;Kim, Myoung-Hoo;You, Il-Kyoung;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul;Ahn, Jae-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1479-1484
    • /
    • 2009
  • The introduction of the large transformer due to the large power demand has increased the fault current in power distribution system. The increased fault current can exceed the cut-off ratings of the circuit breaker. As the methods to solve this problem, the superconducting fault current limiter(SFCL) has been notified. However, the limited fault current by SFCL affects the operational characteristics of the protective device such as overcurrent relay. Therefore, the selection of the proper impedance for the SFCL is required to keep overcurrent relay's protective coordination with the SFCL when a large transformer is introduced into the distribution system. In this paper, the SFCL's impedance for protective coordination was investigates in that a large transformer is introduced.

Forced Resonant Type EMI Dipole Antennas for Frequencies Below 80 MHz

  • Kim, Ki-Chai
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.45-49
    • /
    • 2002
  • This paper presents the basic characteristics of a forced resonant type EMI dipole antennas for frequencies below 80 MHz in which two reactance elements are used for the impedance matching at the fined point. The input impedance of the short dipole less than half-wavelength is controlled by the properly determined loading position and the value of loading reactance. The numerical results show that the small-sized EMI dipole antenna with loller antenna factors for frequencies below 80 MHz can be realized by the reactance loading. In case tole proposed center driven forced resonant type EMI dipole antenna with 0.3 λ length is loaded from the center, the input impedance is matched at feed line with 50 $\Omega$, and hence the antenna has lower factors in the frequency range of 30 to 80 MHz.

A Study on Extracting Characteristics of High Impedance Fault-Current Based on Chaotic Analysis. (카오스 해석에 기초한 고저항 고장전류의 특징 추출에 관한 연구)

  • 배영철;고재호;임화영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.379-388
    • /
    • 2000
  • Previous studies on high impedance faults assumed that the erratic behavior of fault current would be random. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents, which represent geometrical self-similarity are calculated. In addition, qualitative analysis such as phase planes, Poincare maps obtained from fault currents indicate that the irregular behavior is described by strange attractor.

  • PDF

Modeling of a High Impedance Fault Using Two Time-Varying Resistances (두 개의 시변 저항을 이용한 고저항 사고 모델링)

  • Nam, Soon-Ryul;Kang, Yong-Cheol;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.473-478
    • /
    • 2000
  • A more reliable algorithm for detecting a high impedance fault (HIF) requires voltage and current at the relaying point containing information of HIF characteristics including buildup/shoulder as well as nonlinearity/asymmetry. This paper presents a modeling method of an HIF in a distribution system. In order to do this, the proposed method uses two series time-varying resistances (TVRs) controlled by Transient Analysis of Control Systems (TACS) in EMTP. One TVR is employed for nonlinearity/asymmetry and then the other TVR for buildup/shoulder. The proposed method is implemented in EMTP and thus the voltage and current at the relaying point can be obtained.

  • PDF

Vibrational Analysis of Rotor Model considering the Dynamic Characteristics of the Support Structure (지지구조물의 동특성을 고려한 회전축 모델의 진동해석)

  • Choe, Bok-Rok;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.555-563
    • /
    • 2001
  • Support dynamics are often important in rotordynamic analyses. It may well happen in real situation of machines such as centrifugal pumps or turbines operating on flexible structure. This paper presents the applications of the impedance coupling method and the improved rotor model for including the support effects on the interaction with the rotor. The impedance coupling techniques are based on the FRFs of each substructure. Its dynamic stiffness matrix can be assembled to generate the system matrix, which satisfy the constraint conditions in the connection coordinates. And, the improved rotor uses the simplified spring-mass models as support properties. The equivalent support models are directly incorporated into the finite element rotor model. To verify the suggested analytical procedures, the results are compared to those of the pump system.

Accurate Non-Quasi-Static Gate-Source Impedance Model of RF MOSFETs

  • Lee, Hyun-Jun;Lee, Seonghearn
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.569-575
    • /
    • 2013
  • An improved non-quasi-static gate-source impedance model including a parallel RC block for short-channel MOSFETs is developed to simulate RF MOSFET input characteristics accurately in the wide range of high frequency. The non-quasi-static model parameters are accurately determined using the physical input equivalent circuit. This improved model results in much better agreements between the measured and modelled input impedance than a simple one with a non-quasi-static resistance up to 40GHz, verifying its accuracy.

Giant Magnetoimpedance in C067Fe4Mo1.5Si16.5B11 Metallic Glass Ribbon

  • Kuzminski, M.;Nesteruk, K.;Lachowicz, H.K.;Krzyzewski, A.;Yu, Seong-Cho;Lee, Hee-Bok;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.47-51
    • /
    • 2004
  • Giant magneto-impedance (GMI) effect in zero-magnetostrictive Co-based amorphous ribbons samples in their as-quenched and stress-released states as well as with intentionally induced magnetic anisotropy were investigated. Magnetic and impedance properties of the samples exhibiting different anisotropy were compared and the optimum operation conditions for the studied samples from the view-point of their utilization as a sensor element have been determined. A design of a model of magnetic field sensor and characteristics of the constructed prototype are presented.

Impedance Analysis and Experimental Study of a Solenoid Eddy Current Sensor to Detect the Cross-sectional Area of Non-ferromagnetic Stranded Conductors (비자성 연선도체의 단면적을 검출하기 위한 솔레노이드 와전류 센서의 임피던스 해석 및 실험적 연구)

  • Kim, S.D.;Shim, J.M.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.87-94
    • /
    • 1997
  • Impedance analysis of a Solenoid sensor to detect the cross-sectional area of non-ferromagnetic stranded conductors is described in this paper. To inspect electromagnetic characteristics of conductive materials, a nondestructive test eddy current sensor with an encircling coil is chosen. As solving Maxwell equation, normalized impedance response of the sensor within a conducting rod is modeled and the results are expanded to the stranded wires. Geometrical property affecting on stranded structure is considered and a numerical and experimental study is also presented.

  • PDF

A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement (탄소나노튜브 스마트 복합소재의 전기적 임피던스 변화를 이용한 나노센서의 센싱 특성 연구)

  • Kang, I.P.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • To address the need for new intelligent sensing, this paper introduces nano sensors made of carbon nanotube (CNT) composites and presents their preliminary experiments. Having smart material properties such as piezoresistivity, chemical and bio selectivity, the nano composite can be used as smart electrodes of the nano sensors. The nano composite sensor can detect structural deterioration, chemical contamination and bio signal by means of its impedance measurement (resistance and capacitance). For a structural application, the change of impedance shows specific patterns depending on the structural deterioration and this characteristic is available for an in-situ multi-functional sensor, which can simultaneously detect multi symptoms of the structure. This study is anticipated to develop a new nano sensor detecting multiple symptoms in structural, chemical and bio applications with simple electric circuits.

  • PDF

A Design of ASP Microstrip Antenna for PCS band and IMT-2000 band (PCS 대역과 IMT-2000 대역 겸용 ASP 마이크로스트립 안테나 설계)

  • Lee, Eun-Gyu;Jang, Young-Chul;Lee, Jae-Wook;Lee, Won-Hui;Hur, Jung
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.397-400
    • /
    • 2001
  • In this paper, to improve bandwidth of microstrip antenna, we discussed the patch structure using Aperture Stacked Patch. To provid PCS service and IMT-2000 service simultaneous, a microstrip patch antenna needs impedance bandwidth of 22%. But typical microstrip patch antennas have impedance bandwidth of 3∼6%. To analyze characteristics of microstrip pach antenna, we used Ensemble of commercial software. The microsrtip patch antenna was designed and fabricated, tuned. We get following results; 650MHz(33%) of impedance bandwidth for VSWR 1.5. The measured gain of ASP microstrip antenna is 6.94dBi.

  • PDF