A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement

탄소나노튜브 스마트 복합소재의 전기적 임피던스 변화를 이용한 나노센서의 센싱 특성 연구

  • 강인필 (부경대학교 기계공학부)
  • Published : 2009.02.28

Abstract

To address the need for new intelligent sensing, this paper introduces nano sensors made of carbon nanotube (CNT) composites and presents their preliminary experiments. Having smart material properties such as piezoresistivity, chemical and bio selectivity, the nano composite can be used as smart electrodes of the nano sensors. The nano composite sensor can detect structural deterioration, chemical contamination and bio signal by means of its impedance measurement (resistance and capacitance). For a structural application, the change of impedance shows specific patterns depending on the structural deterioration and this characteristic is available for an in-situ multi-functional sensor, which can simultaneously detect multi symptoms of the structure. This study is anticipated to develop a new nano sensor detecting multiple symptoms in structural, chemical and bio applications with simple electric circuits.

Keywords

References

  1. S. Iijima, 1991, "Helical microtubules of graphitic carbon", Nature, Vol. 354, No. 56, pp. 56-58.
  2. T. W. Tombler et al., 2000, "Reversible electromechanical Characteristics of Carbon Nanotubes under Local-Probe Manipula-tion", Nature, Vol. 405, pp. 769-772. https://doi.org/10.1038/35015519
  3. J. R. Wood and H. D. Wagner, 2000, "Single-wall carbon Nanotube as molecular pressure sensors", Applied Physics Letters, Vol. 76, No. 20. pp. 2883-2885. https://doi.org/10.1063/1.126505
  4. O. Varghese et al., 2001, "Gas characteristics of multi-wall carbon nanotubes", Sensors and Actuators B, Vol. 81, pp. 32-41. https://doi.org/10.1016/S0925-4005(01)00923-6
  5. A. Melechko et al., 2005, "Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly", Journal of Applied Physics, Vol. 97, 041301-39.
  6. L. Ericson et al., 2004, "Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers", Science, Vol. 305, No. 3, pp. 1447-1450. https://doi.org/10.1126/science.1101398
  7. I. Kang et al., 2007, "DEVELOPING OF CARBON NANOTUBES COMPOSITE SMART MATERIALS", Solid State Phenomena, Vol. 119, pp. 207-210. https://doi.org/10.4028/www.scientific.net/SSP.119.207
  8. I. Kang et al., 2006, "A Carbon Nanotube Straln Sensor for Structural Health Monitoring", Smart Materials and Structures, Vol. 15, No. 3, pp. 737-748. https://doi.org/10.1088/0964-1726/15/3/009
  9. N. Prokudina et al., 2000, "Carbon Nanotube RLC Circuits", Adv. Mater., Vol. 12, No. 19, pp. 1444-1447. https://doi.org/10.1002/1521-4095(200010)12:19<1444::AID-ADMA1444>3.0.CO;2-J
  10. L. Valentini et al., 2004, "Dielectric behavior of epoxy matrix/single-walled carbon nanotube composites", Composites Science and Technology, Vol. 64, pp. 23-33.
  11. I. Kang et al., 2007, "A Carbon Nanotube Smart Material for Structural Health Monitoring", Solid State Phenomena, Vol. 120, pp. 289-296. https://doi.org/10.4028/www.scientific.net/SSP.120.289
  12. J. S. Park, P. H. Kang and Y. C. Nho, 2003, "Characterization of Carbon Black Filled Polymer Composites for Straln Sensor", J. Ind. Eng. Chem., Vol. 9, No. 5, pp. 595-601.
  13. X. Wang and D. D. L. Chung, 1995, "Short-carbon-fiber-reinforced epoxy as a piezoresistive strain sensor", Smart Materials and Structures, Vol. 4, pp. 363-367. https://doi.org/10.1088/0964-1726/4/4/017
  14. M. Rubner, 1987, "Measurement of Strain Employing A Piezoresistive Blend of a Doped Acetylene Polymer and an Elastomer", U.S. patent number 4708019
  15. P. G. Collins, K. Bradley, M. Ishigami and A. Zettl, 2000, 'Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science. Vol. 287, p. 1801. https://doi.org/10.1126/science.287.5459.1801