• Title/Summary/Keyword: impedance characteristics

Search Result 1,741, Processing Time 0.026 seconds

Analysis of Quench Generation in Fault Types According to Inductance Variation in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (삼상일체화된 자속구속형 고온초전도 전류제한기의 인덕턴스 변화에 따른 사고유형별 퀜치발생 분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.165-166
    • /
    • 2005
  • In this paper, we investigated the quench generation of HTSC elements in fault types according to inductance variation in the integrated three-phase flux-lock type SFCL. The integrated three-phase flux-lock type SFCL was the upgrade version of the single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is operated under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single-phase among three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases quench irrespective of the fault type, which reduces the current of fault phase as well as the current of sound phase. It was observed that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

A Study on the Effect of Water Freezing on the Characteristics of Polymer Electrolyte Membrane Fuel Cells (물의 결빙이 고분자전해질 연료전지 성능에 미치는 영향 및 그 원인에 관한 연구)

  • Ko, Jae-Joon;Cho, Eun-Ae;Ha, Heung-Yong;Hong, Seong-Ahn;Lee, Kwan-Young;Lim, Tae-Won;Oh, In-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • Freezing of water in a polymer electrolyte membrane fuel cell (PEMFC) may cause severe problems in driving a fuel cell vehicle during the winter time. Characteristics of PEMFC which suffered low temperatures below zero degree was examined with the thermal cycles from 80 to $-10^{\circ}C$. With the thermal cycles, the cell performance was degraded due to the phase transformation and volume changes of water. Effects of freezing of water in PEMFC on the electrode structure and polarization resistance were examined by BET analysis, cyclic voltammetry, and AC impedance spectroscopy.

Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite (Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • The MCMB-$Li_4Ti_5O_{12}$ with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-$Li_4Ti_5O_{12}$ as the negative electrode and $LiMn_2O_4$, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.

Design of Local Oscillator with Low Phase Noise for Ka-band Satellite Transponder (Ka-band 위성 중계기용 저위상잡음 국부발진기의 설계 및 제작)

  • 류근관;이문규;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.552-559
    • /
    • 2002
  • The EM(Engineering Model) LO(Local Oscillator) is designed for Ka-band satellite transponder. The VCO(Voltage Controlled Oscillator) is implemented using a high impedance inverter coupled with dielectric resonator to improve the phase noise performance out of the loop bandwidth. The phase of VCO is locked to that of a stable OCXO(Oven Controlled Crystal Oscillator) by using a SPD(Sampling Phase detector) to improve phase noise performance in the loop bandwidth. This LO exhibits the harmonic rejection characteristics above 43.83 dBc and requires 15 V and 160 mA. The phase noise characteristics are performed as -102.5 dBc/Hz at 10 KHz offset frequency and -104.0 dBc/Hz at 100 KHz offset frequency, respectively, with the output power of 13.50 dBm$\pm$0.33 dB over the temperature range of -20~+7$0^{\circ}C$.

A Study on the Electrochemical Characteristics of Biosensor with HRP Enzyme Immobilized on SPCE (SPCE에 HRP 효소가 고정화된 바이오센서의 전기화학적 특성에 관한 연구)

  • Han, Kyoung Ho;Lee, Dae Hyun;Yoon, Do Young;Choi, Sangil
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.73-80
    • /
    • 2020
  • Fenton oxidation method using hydrogen peroxide is an eco-friendly oxidation method used in water treatment and soil restoration. When removing pollutants by this method, it is quite important to properly regulate the concentration of hydrogen peroxide according to the concentration of the contaminants. In this study, electrochemical biosensors using HRP (horseradish peroxidase) enzymes were manufactured and studies were conducted on the activity of enzymes and the detection characteristics of hydrogen peroxide. HRP were electro deposited with chitosan and AuNP on the working electrode surface of the SPCE (Screen Printed Carbon Electrode). Then, the fixation of enzymes was confirmed using the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The activity of HRP enzymes was also identified from chronoamperometry (CA) and UV spectroscopy. After immersing the biosensor in PBS solution the current generated from electrodes by titrating hydrogen peroxide was measured from CA analysis. The generated current increased linearly for the concentration of hydrogen peroxide, and a calibration curve was derived that could predict the concentration of hydrogen peroxide from the current.

Electrochemical Characteristics of Tooth Colored NiTi Wire (치아색으로 코팅된 NiTi 와이어의 전기화학적 특성)

  • Kim, Won-Gi;Cho, Joo-Young;Choe, Han-Cheol;Lee, Ho-Jong
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.223-232
    • /
    • 2010
  • NiTi alloy has been used for orthodontic wire due to good mechanical properties, such as elastic strength, friction resistance, and high corrosion resistance. Recently, these wire were coated by polymer and ceramic materials for aesthetics. The purpose of this study was to investigate electrochemical characteristics of tooth colored NiTi wire using various instruments. Wires (round type and rectangular type) were used, respectively, for experiment. Polymer coating was carried out for wire. Specimen was investigated with optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The corrosion properties of the specimens were examined using potentiodynamic tests (potential range of -1500 ~ 2000 mV) and electrochemical impedance spectroscopy (frequency range of 100 kHz ~ 10 mHz) in a 0.9 % NaCl solution by potentiostat. From the results of polarization behavior, the passive region of non-coated NiTi wire showed largely, whereas, the passive region of curved NiTi wire showed shortly in anodic polarization curve. In the case of coated NiTi wire, pitting and crevice corrosion occurred severely at interface between non-coated and coated region. From the results of EIS, polarization resistance(Rp) value of non-coated round and rectangular NiTi wire at curved part showed $5.10{\times}10^5{\Omega}cm^2$ and $4.43{\times}10^5{\Omega}cm^2$. lower than that of coated NiTi wire. $R_p$ of coated round and rectangular NiTi wire at curved part showed $1.31{\times}10^6{\Omega}cm^2$ and $1.19{\times}10^6{\Omega}cm^2$.

A Design and Implementation of Dual-band Monopole Antenna with two arc-shaped line for WLAN applicaiton (WLAN 적용을 위한 두 원호 모양을 갖는 이중 대역 모노폴 안테나의 설계 및 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1049-1056
    • /
    • 2017
  • In this paper, a microstrip-fed dual-band monopole antenna with two arc-shaped lines for WLAN(: Wireless Local Area Networks) applications was designed, fabricated and measured. The proposed antenna is based on a microstrip-fed structure, and composed of two arc-shaped lines and then designed in order to get dual band characteristics. We used the simulator, Ansoft's High Frequency Structure Simulator(: HFSS) and carried out simulation about parameters L2, L5, and with/without slit to get the optimized parameters. The proposed antenna is made of $13.0{\times}34.0{\times}1.0 mm^3$ and is fabricated on the permittivity 4.4 FR-4 substrate($12.0{\times}34.0{\times}1.0mm^3$). The experiment results are shown that the proposed antenna obtained the -10 dB impedance bandwidth 360 MHz (2.29~2.65 GHz) and 1,245 MHz (4.705~5.95 GHz) covering the WLAN bands. Also, the measured gain and radiation patterns characteristics of the proposed antenna are presented at required dual-band(2.4 GHz band/5.0 GHz band), respectively.

Design of the Electromagnetic Coupling Wideband Microstrip Antenna using FDTD Method (FDTD 법을 이용한 광대역 전자기 결합 마이크로스트립 안테나의 설계)

  • Jang, Yong-Woong;Shin, Ho-Sub;Kim, Nam;Park, Ik-Mo;Shin, Chull-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.473-482
    • /
    • 1998
  • In this paper, characteristics of the wide band microstrip antennas with parasistic element are analyzed by the Finite Difference Time Domain(FDTD) method, and antenna parameters are optimized to get maximum bandwidth, retern loss, input impedance, and radiation pattern are calculated by Founier transforming the time domain results. The characteristics of the antenna are varied and the bandwidth of the antenna is broaded as a length and a width of the driven element, a gap of the driven element and the parasitic element, a width and a length of parasitic element. So the different patchs are resonating at different frequencies and this multipule resonance increase the bandwidth. The Results of the calculation and measurement, the size of the antenna with parasitic element is about a twice larger than a microstrip antenna, but bandwidth is four times better than a microstrip antenna. And these results were in relatively good accordance with the measured values.

  • PDF

Development of EQM(Engineering Qualified Model) Local Oscillator far Ka-band Satellite Transponder (Ka-band위성 중계기용 국부발진기의 우주인증모델(EQM) 개발)

  • 류근관;이문규;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.335-344
    • /
    • 2004
  • A low phase noise EQM(Engineering Qualified Model) LO(Local Oscillator) has been developed for Ka-band satellite transponder. A VCDRO(Voltage Controlled Dielectric Resonator Oscillator) is also designed using a high impedance inverter coupled with dielectric resonator to improve the phase noise performances out of the loop bandwidth. The mechanical analysis fur housing and the thermal analysis fur circuit board are achieved. This EQM LO is applied to Ka-band satellite transponder of EQM level after environmental experiments for space application. The LO has the harmonic suppression characteristics above 52 ㏈c and requires low power consumption under 1.3 watts. The phase noise characteristics are exhibited as -101.33 ㏈c/㎐ at 10 ㎑ offset frequency and -114.33 ㏈c/㎐ at 100 ㎑ offset frequency, with the output power of 14.0 ㏈m${\pm}$0.17 ㏈ over the temperature range of -15∼+65$^{\circ}C$.