• Title/Summary/Keyword: impact pressure sensor

Search Result 35, Processing Time 0.024 seconds

A Pattern Analysis of Impact Signal in Reactor Coolant System (원전 원자로냉각재계통 내의 충격신호 유형 분석)

  • Jung, Chang-Gyu;Lee, Kwang-Hyun;Lee, Jae-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.181-184
    • /
    • 2014
  • Loose Parts Monitoring System(LPMS) monitors loosened or detached parts and foreign parts inside the pressure boundary of a reactor coolant system (RCS). It is difficult to discriminate valid signal from LPMS alarms at full power since the signal pattern by thermal shocks and structure friction are similar to those by loose metal impacts. In addition, It is more difficult to discriminate the impact signals induced by the rod driving, sensor hard-line movement and loosened component since they have similar frequency characteristics with valid signals. This paper classifies the signal patterns by analyzing actual LPMS signal captured during nuclear power plant operation.

  • PDF

A Study on Weight Transfer Sidehill Slopes during Goal Impact : Especially sidehill Slopes with ball above the feet (측면경사면에서의 목표 타격시 체중이동에 관한 연구 : 오르막경사를 중심으로)

  • Lee, Eui-Lin;Choi, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.43-53
    • /
    • 2006
  • Among several movements that occurred upon a slope, golf swing is the most typical one because environmental conditions dynamically vary with many kinds of slopes. Some studies on the golf swing were performed about a weight transfer on flatland, however, there couldn't be seen any study about the weight transfer on slope elsewhere. Therefore, the purpose of this study was to provide quantified data to objectively test the coaching words and keys about the weight transfer at sidehill slope during goal impact EspeciaIly sidehill Slopes with ball above the feet. Four highschool golfer, who have average handy 5, were recruited for this study. Plantar pressure distribution and cinematographic data were collected during golf swing in the conditions of flatland, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$sidehill slope simultaneously. The two data were used to synchronize the two data later. The plantar regions under the foot were divided into 8 regions according to the directly applied pressure pattern of the subject to insole sensor. The 8 foot regions were hullux, medial forefoot, central forefoot, lateral forefoot, medial midfoot, lateral midfoot, medial heel, and lateral heel. And the plantar pressure data was also divided into four movement address, phases-backswing. downswing, and follow-through phases according to the percentage shown to the visual information of film data. Based on the investigations on public golf books and experiences of golfers, it was hypothesized by the authors in the early of this study that the steeper slopes are, the more weight loads on left foot that positions at the higher place. When observing the results of plantar pressure and vertical force curves according to the sidehill slope conditions, the hypothesis could be accepted.

Measurement of Individuals' Emotional Stress Responses to Construction Noise through Analysis of Human Brain Waves

  • Hwang, Sungjoo;Jebelli, Houtan;Lee, Sungchan;Chung, Sehwan;Lee, SangHyun
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.237-242
    • /
    • 2020
  • Construction noise is among the most critical stressors that adversely affect the quality of life of the people residing near construction sites. Many countries strictly regulate construction noise based on sound pressure levels, as well as timeslots and type of construction equipment. However, individuals react differently to noise, and their tolerance to noise levels varies, which should be considered when regulating construction noise. Although studies have attempted to analyze individuals' stress responses to construction noise, the lack of quantitative methods to measure stress has limited our understanding of individuals' stress responses to noise. Therefore, the authors proposed a quantitative stress measurement framework with a wearable electroencephalogram (EEG) sensor to decipher human brain wave patterns caused by diverse construction stressors (e.g., worksite hazards). This present study extends this framework to investigate the feasibility of using the wearable EEG sensor to measure individuals' emotional stress responses to construction noise in a laboratory setting. EEG data were collected from three subjects exposed to different construction noises (e.g., tonal vs. impulsive noises, different sound pressure levels) recorded at real construction sites. Simultaneously, the subjects' perceived stress levels against these noises were measured. The results indicate that the wearable EEG sensor can help understand diverse individuals' stress responses to nearby construction noises. This research provides a more quantitative means for measuring the impact of the noise generated at a construction site on neighboring communities, which can help frame more reasonable construction noise regulations that consider various types of residents in urban areas.

  • PDF

Development of Skin Type Airbag Helmet through Consumer Oriented Concept Design and the Cushion Part's Impact Analysis (소비자 맞춤형 개념설계 및 쿠션부 충격해석을 통한 외피형 에어백 헬멧 개발)

  • Jung, In-Duck;Lee, Yong-Moon;Oh, Mi-Ok;Kim, Seung-Chul;Lee, Tae-Gu;Kang, MyungChang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.101-108
    • /
    • 2016
  • This study was initiated to minimize head injuries, which is the largest cause of increased external activity, traffic accident injuries, and death. We developed a low cost airbag that can be covered by a safety helmet based on consumer needs. The results of the survey showed that safety is the most important aspect of consumers' safety helmets. It also predicted that increasing the weight would present the biggest problem. Curved airbag cushion parts that can be attached to a helmet and the sensor part of a block type were designed. Impact analysis was performed by specifying the pressure inside the airbag and the volume of the airbag as variables.

Research on the Low-Frequency Combustion Characteristics of an Oxygen-Rich Preburner (산화제 과잉 예연소기 저주파 연소특성 연구)

  • Moon, Insang;Moon, Ilyoon;Ha, Seong-Up
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.89-96
    • /
    • 2013
  • Combustion pressures were measured to study combustion stability for an oxygen rich preburner by both of static and dynamic pressure sensors. The resolutions of each static and dynamic pressure sensor are the 1,000 Hz and 25,600 Hz, respectively. The nominal combustion pressure of the preburner was 200 bar but 80 bar was used at the several initial tests for the safety reason. Two stage ignition was applied to reduce the ignition impact for every tests including the tests with 200 bar combustion pressure. The tests lasted for 10 sec. max. and a little fluctuations of pressure was observed during the main mode. The measured pressures were studied by FFT analysis and no noticeable frequency coupling was found. Thus the preburner can be regarded as stable and it can be utilized for further study on staged combustion cycle liquid rocket engine.

Construction of sports hall flooring with excellent properties by nanocomposites

  • Xianfang Zhang
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.155-164
    • /
    • 2024
  • The rapid evolution of intelligent sports equipment and gadgets has led to the transformation of smartphones into personalized coaching devices. This transformative role is central in today's technologically advanced landscape, addressing the needs of individuals with contemporary lifestyles. The development of intelligent sports gadgets is geared towards elevating overall quality of life by facilitating sports activities, workouts, and promoting health preservation. This categorization yields two primary types of devices: smart sports devices for exercise and smart health control devices, which encompass functionalities such as blood pressure monitoring and muscle volume measurement. Illustrative examples include smart headbands, smart socks, smart wristbands, and smart shoe soles. Significantly, the global market for smart sports devices has garnered substantial popularity among enthusiasts. Moreover, the integration of sensors within these devices has instigated a revolution in group and professional sports, facilitating the calculation of impact intensity and ball speed. The utilization of various types of smart sports equipment has proliferated, encompassing applications in both sports' performance and health monitoring across diverse demographics. This article conducts an assessment of the application of nanotechnology in the continuous modeling of the magnetic electromechanical sensor integrated within smart shoe soles, with a specific emphasis on its implementation in soccer training. The exploration delves into the nuanced intersection of nanotechnology and sports equipment, elucidating the intricate mechanisms that underlie the transformative impact of these advancements.

Analysis of Compressive Deformation Behaviors of Aluminum Alloy Using a Split Hopkinson Pressure Bar Test with an Acoustic Emission Technique (SHPB 시험과 음향방출법을 이용한 알루미늄 합금의 압축 변형거동 분석)

  • Kim, Jong-Tak;Woo, Sung-Choong;Sakong, Jae;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.891-897
    • /
    • 2013
  • In this study, the compressive deformation behaviors of aluminum alloy under high strain rates were investigated by means of a SHPB test. An acoustic emission (AE) technique was also employed to monitor the signals detected from the deformation during the entire impact by using an AE sensor connected to the specimen with a waveguide in real time. AE signals were analyzed in terms of AE amplitude, AE energy and peak frequency. The impacted specimen surface and side area were observed after the test to identify the particular features in the AE signal corresponding to the specific types of damage mechanisms. As the strain increased, the AE amplitude and AE energy increased whereas the AE peak frequency decreased. It was elucidated that each AE signal was closely associated with the specific damage mechanism in the material.

A comparison study for mask plantar pressure measures to the difference of shoes in 20 female (20대 여성의 신발종류에 따른 족저압 영역별 비교 연구)

  • Kim, Y.J.;Ji, J.G.;Kim, J.T.;Hong, J.H.;Lee, J.S.;Lee, H.S.;Park, S.B.
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

ENVIROMENTAL CONDITION DURING AIR SHIPMENT OF HORTICULTURAL PRODUCTS FROM OKINAWA TO TOKYO

  • Akinaga, Takayoshi;Kohda, Yoshihiro
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.413-422
    • /
    • 1993
  • Air shipment affords the quickest possible delivery of horticultural products. The price of air shipped horticultural products are relatively high as most of these products are perishable. Usually the temperature in the cargo compartment is not controlled during flight. Thus, special attention should be paid to procooling prior to shipment. The environmental condition during transportation of horticultural products is an essential parameter for maintaining the quality of perishable products. Commonly horticultural products were loaded by ULD(Unit Load Devices) as a container or pallet in the aircraft (except for small aircraft) . Therefore, inside temperature of the container and cargo compartment came into question. Scarce literature on the relationship between environmental condition and quality changes of horticultural products during air shipment can be found. By the stand point of keeping fresh quality, investigations on the actual condition of air shipments were carried out to improve the technique during the distribution process of fresh horticultural products. Temperature, humidity, atmospheric pressure, carbon dioxide, ethylene, impacts, and changes in quality during the air shipment of snapbeans, okras and chrysanthemums were measured. Temperature was measured by recording thermometers, relative humidity by recording hygrometers, atmospheric pressure by a strain -guage type pressure sensor, carbon dioxide by testing tubes, ethylene by sampling bags and a gaschromatograph, impacts and vibrations by impact recorders and a 3D accelerometer. Relationships between environmental conditions and quality changes during air shipments were clarified. It was expected from investigations into actual shipments that the ventilation and insulation properties of air freight containers were related to the quality of agricultural products. Aircraft can no directly load and unload trucks into them. The transshipment is inclined to cause shocks and vibrations, and to invite damages within a short time.

  • PDF