DOI QR코드

DOI QR Code

Research on the Low-Frequency Combustion Characteristics of an Oxygen-Rich Preburner

산화제 과잉 예연소기 저주파 연소특성 연구

  • 문인상 (한국항공우주연구원 미래로켓연구팀) ;
  • 문일윤 (한국항공우주연구원 미래로켓연구팀) ;
  • 하성업 (한국항공우주연구원 미래로켓연구팀)
  • Received : 2012.07.18
  • Accepted : 2012.12.11
  • Published : 2013.02.01

Abstract

Combustion pressures were measured to study combustion stability for an oxygen rich preburner by both of static and dynamic pressure sensors. The resolutions of each static and dynamic pressure sensor are the 1,000 Hz and 25,600 Hz, respectively. The nominal combustion pressure of the preburner was 200 bar but 80 bar was used at the several initial tests for the safety reason. Two stage ignition was applied to reduce the ignition impact for every tests including the tests with 200 bar combustion pressure. The tests lasted for 10 sec. max. and a little fluctuations of pressure was observed during the main mode. The measured pressures were studied by FFT analysis and no noticeable frequency coupling was found. Thus the preburner can be regarded as stable and it can be utilized for further study on staged combustion cycle liquid rocket engine.

산화제 과잉 예연소기의 연소안정성을 알아보기 위하여 예연소기의 각 부위에서 압력을 측정하였다. 압력측정은 정압센서와 동압센서를 모두 이용하여 이루어졌다. 이 때 사용된 정압센서와 동압센서의 해상도는 각각 최고 1000 Hz와 25,600 Hz이다. 예연소기의 정격압은 200 bar이나 위험을 줄이기 위하여 초기에는 80 bar로 낮추어 시험을 하였고 안정성이 확인된 이후 200 bar 시험을 실시하였다. 또한 모든 시험에서 점화충격을 줄이기 위하여 저압점화 후 연소압을 정격압력까지 올리는 2단 점화를 사용하였다. 시험은 최대 약 10초가량 실시되었으며 메인모드 진입 이후에는 연소압에 큰 변화 보이지 않았다. 연소압의 측정결과는 FFT를 통해 좀 더 심도 있게 분석되었으며 그 결과 예연소기의 연소안정성을 해할 만한 주파수의 커플링은 발견되지 않았다. 따라서 현재 개발되고 있는 예연소기는 향후 다단 연소사이클 엔진 연구에 활용할 수 있을 것으로 기대한다.

Keywords

References

  1. Huang, Y. and Yang, V., "Dynamics and stability of lean-premixed swirl-stabilized combustion," Progress in Energy and Combustion Science, Vol. 35, No. 4, 2009, pp.293-364 https://doi.org/10.1016/j.pecs.2009.01.002
  2. Kumaran, K. and Shet, U. S. P., "Effect of swirl on lean flame limits of pilot-stabilized open premixed turbulent flames," Combustion and Flame, Vol. 151, No. 1-2, 2007, pp.391-395 https://doi.org/10.1016/j.combustflame.2007.06.016
  3. Lucca-Negra., O. and O'Doherty, T., "Vortex break down: a review," Progress in Energy and Combustion Science, Vol. 271, No. 4, 2001, pp.431-48
  4. Syred, N., "A review of oscillation mechanisms and the role of the processing vortex core (PVC) in swirl combustion system," Progress in Energy and Combustion Science, Vol. 32, No. 2, 2006, pp.93-161 https://doi.org/10.1016/j.pecs.2005.10.002
  5. Moon, I. S. Lee, S. M., Moon, I. Y., Yoo, J. H. and Lee, S. Y., "Research on the Cooling Channels of the Preburners for Small Liquid Rocket Engine," 14th AIAC, Melbourne: Royal Aeronautical Society, 2011, pp.440-447
  6. Moon, I., Lee, S., Moon, I. Y., Yoo, J. H. and Lee, S. Y., "Design of Cooling Channels of Preburners for Small Liquid Rocket Engines with Computational Flow and Heat Transfer Analysis," Journal of Astronomy and Space Sciences, Vol. 28, No. 3, 2011, pp.1-7 https://doi.org/10.5140/JASS.2011.28.1.001
  7. Moon. I. S., Moon, I. Y., Lee, S. Y. "A Study on the Exhaust Gas Created by Staged Combustion and Gas Generator Cycle LRE by Using CEA," KSPE Fall Conference, 2011, pp.863-866
  8. Haeseler, D., Mading, C., Preclik, D., Rubinskiy, V., and Kosmacheva, V., "LOx-kerosene oxidizer-rich gas-generator and main combustion chambers subscale testing," 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006, pp.1-8
  9. Krebs, W., Bethke, S., Johnson, C, Sattinger, S. Flohr, P, and et. al., "Thermoacoustic design tools and passive means applied by Siemens power generation," Chapter 5, In: Lieuwen, T., Yang, V., editors. Combustion Instabilities in gas turbine engines:: operational experience, fundamental mechanisms and modeling. Progress in Astronautics and Aeronautics, 2005, pp.89-112
  10. Mongia, H. C. Held, T. J., Hsiao, G., C., and Pandalai, R. P., 'Incorporation of combustion instability issues into design process: GE aero-derivative and aero engines experience. Chapter 3, In: Lieuwen T. and Yang, V., editors, Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms and modeling. Progress in Astronautics and Aeronautics, 2005, pp.43-64
  11. Cassidy J. J. and Falvey H. T., "Observation of unsteady flow arising after vortex breakdown," Journal of Fluid Mech, Vol. 41, No. 4, 1970, pp.727-736 https://doi.org/10.1017/S0022112070000873
  12. Ha, S. U., Jung, Y. S., Kim, H. T., Han, S. Y., and Cho, G. R., "Low Frequency Dynamic Characteristics of Liquid-Propellant Rocket Engine Combustor", Journal of the Korean Society of Propulsion Engineers, Vol. 8, No. 4, 2004, pp.91-101
  13. Kim, S. K., Han, S. H., Cho, M. O. and Choi, H. S., "Numerical Modeling of High-Pressure Combustion Processes of Kerosene/Liquid Oxygen within Liquid Rocket Combustion Chambers," The Korean Society for Aeronautical and Space Sciences Fall Conference, 2011, pp.414-422

Cited by

  1. Study on Combustion Dynamic Characteristics of Oxygen-Rich Preburners vol.30, pp.4, 2014, https://doi.org/10.2514/1.B35140