• Title/Summary/Keyword: Oxygen Rich Combustuion

Search Result 2, Processing Time 0.016 seconds

Research on the Characteristics of the Oxygen Rich Combustion Preburner (산화제 과잉 예연소기 연소특성 연구)

  • Moon, In-Sang;Moon, Il-Yoon;Kang, Sang-Hun;Lee, Soo-Yong;Ha, Seong-Up
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.65-69
    • /
    • 2012
  • An oxygen rich preburner was tested and the responses from the pressure sensors were studied with FFT analysis. Since the limited capability of the static sensor, less than 250 Hz frequency domain was investigated and compared to the results of the dynamic sensors. As a result, 60 Hz harmonics were presented dominant in the combustion pressure and oxygen inlet pressure. While similar harmonics were shown with the dynamic sensor, it indicated that harmonics less than 60 Hz were very minor and the high frequency is more important.

  • PDF

Research on the Low-Frequency Combustion Characteristics of an Oxygen-Rich Preburner (산화제 과잉 예연소기 저주파 연소특성 연구)

  • Moon, Insang;Moon, Ilyoon;Ha, Seong-Up
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.89-96
    • /
    • 2013
  • Combustion pressures were measured to study combustion stability for an oxygen rich preburner by both of static and dynamic pressure sensors. The resolutions of each static and dynamic pressure sensor are the 1,000 Hz and 25,600 Hz, respectively. The nominal combustion pressure of the preburner was 200 bar but 80 bar was used at the several initial tests for the safety reason. Two stage ignition was applied to reduce the ignition impact for every tests including the tests with 200 bar combustion pressure. The tests lasted for 10 sec. max. and a little fluctuations of pressure was observed during the main mode. The measured pressures were studied by FFT analysis and no noticeable frequency coupling was found. Thus the preburner can be regarded as stable and it can be utilized for further study on staged combustion cycle liquid rocket engine.