• Title/Summary/Keyword: impact pressure sensor

Search Result 35, Processing Time 0.036 seconds

Applications of Fiber Bragg Grating Sensor Technology (FBG 센서 기술의 응용 사례)

  • Kang Dong-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.3-9
    • /
    • 2006
  • Among many fabrication methods of composite materials, filament winding is the most effective method for fabricating axis-symmetric structures such as pressure tanks and pipes. Filament wound pressure tanks are under high internal pressure during the operation and it has the complexity in damage mechanisms and failure modes. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. In this paper, we fabricated several filament wound pressure tanks with embedded FBG sensors and conducted some kinds of experiments such as an impact test, a bending test, and a thermal cycling test. From the experimental results, it was successfully demonstrated that FBG sensors are very appropriate to composite structures fabricated by filament winding process even though they are embedded into composites by multiplexing.

  • PDF

Grasping Impact-Improvement of Robot Hands using Proximate Sensor (근접 센서를 이용한 로봇 손의 파지 충격 개선)

  • Hong, Yeh-Sun;Chin, Seong-Mu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.42-48
    • /
    • 1999
  • A control method for a robot hand grasping a object in a partially unknown environment will be proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Particularly, the finger joints were driven servo-pneumatically in this study. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases ; fast aproach, slow transitional contact and contact force control. That is, the fingertip approached to the object with full speed, until the output signal of the proximate sensor began to change. Within the perating range of the proximate sensor, the finger joint was moved by a state-variable feedback position controller in order to obtain a smooth contact with the object. The contact force of fingertip was then controlled using the blocked-line pressure sensitivity of the flow control servovalve for finger joint control. In this way, the grasping impact could be reduced without reducing the object approaching speed. The performance of the proposed grasping method was experimentally compared with that of a open loop-controlled one.

  • PDF

A Study of In-sole Plantar Pressure Distribution in Functional Tennis Shoes (기능성 전문테니스화의 족저압력분포 분석)

  • Lee, J.S.;Kim, Y.J.;Park, S.B.
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.99-118
    • /
    • 2004
  • The aim of this study is to evaluate tennis shoes's plantar pressure distribution in tennis prayers and to determine the influence of the shoe on various tennis movements. When investigating the biomechanics of movement in tennis, one of the first things to do is to understand the movement patterns of the sport, specifically how these patterns relate to different tennis shoes. Once these patterns are understood, footwear company can design tennis shoes that match the individual needs of tennis players. Plantar pressure measurement is widely employed to study foot function, the mechanical pathogenesis for foot disease and as a diagnostic and outcome measurement tool for many performance. Measurements were taken of plantar pressure distribution across the foot and using F-Scan(Tekscan Inc.) systems respectively. The F-Scan system for dynamic in-shoe foot pressure measurements has enabled us to assess quantitatively the efficacy of different types of footwear in reducing foot pressures. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right, left shoes. For this study 4 university male, high level tennis players were instructed to hit alternated forehand stroke, backhand stroke, forehand volley, backhand volley, smash, service movement in 4 different tennis shoes. 1. When impact in tennis movement, peak pressure distribution of landing foot displayed D>C>B>A, A displayed the best low pressure distribution. A style's tennis shoes will suggest prayer with high impact. If prayer with high impact feeling during pray in tennis wear A style, it will decrease injury, will have performance improvement. 2. When impact in tennis movement, plantar pattern of pressure distribution in landing foot displayed B>A>C>D in stability performance. During tennis, prayer want to stability movement suggest B style tennis shoes when tennis movement impact keep stability of human body. B style tennis shoes give performance improvement 3. When impact in tennis movement, plantar pattern of center of force(C.O.F.)trajectory in landing foot analyzed this : 1) When stroke movement and volley movement in tennis, prayer better to rearfoot movement. 2) when service movement, prayer midfoot strike movement. 3) when smash movement, prayer have forefoot strike movement.

Design of Injection Mold with Cavity Pressure/Temperature Sensors and Molding for Standard Tensile Test Specimen (내압력.온도센서를 갖는 표준 인장시편용 사출금형설계 및 성형)

  • Lee D.M.;Han B.K.;Lee O.S.;Lee Sung-Hee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1416-1419
    • /
    • 2005
  • Design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed in the present study for tensile test specimen. Standards of mold-base and tensile test specimen were used to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of injection mold machine to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and polycarbonate tensile specimens were prepared for the tensile test. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.

  • PDF

Injection Mold with Cavity Pressure/Temperature Sensors for Standard Tensile Test Specimen (내압력.온도센서를 갖는 표준 인장시편용 사출금형)

  • Lee, Do-Myoung;Han, Byoung-Kee;Lee, Sung-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.84-90
    • /
    • 2007
  • In this study, design and manufacturing of plastic injection mold with cavity pressure/temperature sensors were performed fur tensile test specimen. International standard system for plastic tensile specimen was applied to design an injection molding system. Cavity pressure and temperature sensors were placed on the side of fixed platen of the injection mold to prevent them from external impact damage. Injection molding experiments with variations of injection speed and melt temperature were performed and then tensile test of the manufactured polycarbonate specimens was also performed. It was shown that injection molding processing parameters can have effect on the mechanical properties of the plastic injection molded part.

Study on the Dynamic Response Characteristics of Impact Force Sensors Based on the Strain Gage Measurement Principle (변형률 게이지 측정원리를 이용한 충격하중 측정 센서의 동적응답 특성에 관한 연구)

  • Ahn, Jung-Lyang;Kim, Seung-Kon;Sung, Nak-Hoon;Song, Young-Soo;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • In order to estimate blast damage zone and control rock fragmentation in blasting, it is important to obtain information regarding blast hole pressure. In this study, drop impact tests of acrylic, aluminium, steel sensors were performed to investigate the dynamic response characterizations of the sensors through the strain signals. As a result, the strain signals obtained from the steel sensors showed less sensitivity to impact force level and experienced small changes with various length of the sensors. The steel sensors were applied to measure the impact force of an electric detonator.

New uroflowmetry technique measuring hydraulic pressure for prostate diagnostics (전립선 진단을 위한 수압 측정 방식의 새로운 요 유량 계측기법)

  • Kim, Kyung-Ah;Choi, Sung-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.179-186
    • /
    • 2007
  • Uroflowmetry is non-invasive and easily performed to diagnose benign prostate hypertrophy (BPH) frequent in aged men. Weight change during urination is usually measured to estimate the urinary flow rate by a load cell, but sensitive to any impacts against the bottom of the container, leading to unnecessary noise generation. Moreover, load cells are relatively expensive raising the production cost. The present study proposed a new technique, measuring hydraulic pressure on the bottom of the urine container to evaluate the urinary flow rate. Low cost pressure transducer enabled almost perfectly linear relationship between the urine volume and the hydraulic pressure. During both the simulated and human urination experiment, variance of the pressure signal was more than 50 % smaller than the weight signal acquired by a load cell, which demonstrated that the impact noise was decreased to a great degree by pressure compared to weight measurement.

Accuracy evaluation of diagnostic parameters estimated by uroflowmetry technique measuring hydraulic pressure (수압측정 방식의 요류검사 진단매개변수의 정확도 평가)

  • Kim, Kyung-Ah;Choi, Seong-Su;Kim, Sung-Sik;Kim, Kun-Jin;Park, Kyung-Soon;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.413-418
    • /
    • 2007
  • Uroflowmetry is of great convenience to diagnose benign prostate hypertrophy common in aged men. The urinary flow rate is obtained by weight measurement using load cell, however, sensitive to impact noise. An alternative technique was recently proposed to measure hydraulic pressure instead of weight and demonstrated to introduce significantly reduced noise. In this paper, we described the measured diagnostic parameters between the weight and pressure measuring techniques in 10 normal men. The weight and pressure signals were simultaneously acquired during urination, converted into urine volumes, then differentiated to obtain flow rate signals, which showed very similar waveforms. Diagnostic parameters evaluated by pressure measuring technique were well correlated with the standard weight measuring technique (correlation coefficient > 0.99). Therefore, the new uroflowmetry based on hydraulic pressure measurement can provide accurate diagnostic parameters, which would be clinically valid.

A Study on the Foot Plantar Pressure and Temperature changes of the Developed Combat boots with Functional Impact Absorption and Ventilation Insole (충격흡수 및 통기기능 인솔을 적용한 개발 전투화의 족저압력 및 온도변화 연구)

  • Han, Ki-Hoon;Lee, Joong-Sook;Bae, Kang-Ho;Shin, Jin-Hyung;Jeong, Sang-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.89-98
    • /
    • 2018
  • The purpose of this study was to compare the foot plantar pressure and temperature changes of the developed combat boots with functional impact absorption and ventilation insole. A total of 11 male subjects(age: $21.8{\pm}2.2yrs$, height: $174.3{\pm}3.6cm$, weight: $71.6{\pm}8.6kg$, foot length: $261.0{\pm}1.0mm$) were recruited to compare the foot plantar pressure and temperature changes of the three types of combat boots: Combat boots A (generalized combat boots), Combat boots B (developed combat boots with ventilation function), Combat boots C (Application of ventilation function and impact absorption insole to combat boots B). Pedar-X and a portable thermistor temperature sensor were used to measure the foot plantar pressure parameters and the internal temperature of the combat boots, respectively. One-way ANOVA was used to compare the results of plantar pressure and temperature changes. The results were as follows: First, in the foot plantar pressure parameters, combat boots C showed the significant lower maximum foot plantar pressure in the right/left rear foot compared with combat boots A and average foot plantar pressure in the left foot compared with combat boots B. Second, after 40 minutes from the start of walking, the developed combat boots B and C showed the significant lower temperature than the general combat boots A.